Что изучает механическая механика
Что изучает механическая механика
По поводу предмета механики уместно сослаться на слова авторитетного учёного-механика С. М. Тарга из введения к 4-му изданию его широко известного учебника теоретической механики: «Механикой в широком смысле этого слова называется наука, посвящённая решению любых задач, связанных с изучением движения или равновесия тех или иных материальных тел и происходящих при этом взаимодействий между телами. Теоретическая механика представляет собою часть механики, в которой изучаются общие законыдвижения и взаимодействия материальных тел, то есть те законы, которые, например, справедливы и для движения Земли вокруг Солнца, и для полёта ракеты или артиллерийского снаряда и т. п. Другую часть механики составляют различные общие и специальные технические дисциплины, посвящённые проектированию и расчёту всевозможных конкретных сооружений, двигателей, механизмов и машин или их частей (деталей)».
В приведённом высказывании упущен из виду тот факт, что изучением общих законов движения и взаимодействия материальных тел занимается также и механика сплошных сред (илимеханика сплошной среды) — обширная часть механики, посвящённая движению газообразных, жидких и твёрдых деформируемых тел. В этой связи академик Л. И. Седов отмечал: «В теоретической механике изучаются движения материальной точки, дискретных систем материальных точек и абсолютно твёрдого тела. В механике сплошной среды … рассматриваются движения таких материальных тел, которые заполняют пространство непрерывно, сплошным образом, и расстояния между точками которых во время движения меняются».
Таким образом, по предмету изучения механика подразделяется на:
Другой важнейший признак, используемый при подразделении механики на отдельные разделы, основан на тех представлениях о свойствах пространства, времени и материи, на которые опирается та или иная конкретная механическая теория. По данному признаку в рамках механики выделяют такие разделы:
Механическая система
Механика занимается изучением так называемых механических систем.
Механическая система обладает определённым числом степеней свободы, а её состояние описывается с помощью обобщённых координат и соответствующих им обобщённых импульсов . Задача механики состоит в изучении свойств механических систем, и, в частности, в выяснении их эволюции во времени.
Являясь одним из классов физических систем, механические системы по характеру взаимодействия с окружением разделяются на изолированные (замкнутые), закрытые и открытые, по принципу изменения свойств во времени — на статические и динамические.
Наиболее важными механическими системами являются:
Важнейшие механические дисциплины
[показать] Фундаментальные понятия |
---|
[показать] Формулировки |
---|
[показать] Разделы |
---|
[показать] Учёные |
---|
Механика сплошных сред | |||||
Сплошная среда | |||||
| |||||
См. также: Портал:Физика |
Квантовая механика | |||||||||
Принцип неопределённости | |||||||||
Введение Математические основы | |||||||||
| |||||||||
См. также: Портал:Физика |
Стандартные («школьные») разделы механики: кинематика, статика, динамика, законы сохранения. Кроме них, механика включает следующие (во многом перекрывающиеся по содержанию) механические дисциплины:
Некоторые курсы механики ограничиваются только твёрдыми телами. Изучением деформируемых тел занимаются теория упругости (сопротивление материалов — её первое приближение) и теория пластичности. В случае, когда речь идёт не о жёстких телах, а о жидкостях и газах, необходимо прибегнуть к механике жидкостей и газов, основными разделами которой являются гидростатика и гидрогазодинамика. Общей теорией, изучающей движение и равновесия жидкостей, газов и деформируемых тел, является механика сплошных сред.
Основной математический аппарат классической механики: дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. К современному математическому аппарату классической механики относятся, прежде всего, теория дифференциальных уравнений, дифференциальная геометрия (симплектическая геометрия, контактная геометрия, тензорный анализ, векторные расслоения, теория дифференциальных форм), функциональный анализ и теория операторных алгебр, теория катастроф и бифуркаций. В современной классической механике используются и другие разделы математики. В классической формулировке, механика базируется на трёх законах Ньютона. Решение многих задач механики упрощается, если уравнения движения допускают возможность формулировки законов сохранения (импульса, энергии, момента импульса и других динамических переменных).
Различные формулировки механики
Все три закона Ньютона для широкого класса механических систем (консервативных систем, лагранжевых систем, гамильтоновых систем) связаны с различными вариационными принципами. В этой формулировке классическая механика таких систем строится на основе принципа стационарности действия: системы движутся так, чтобы обеспечить стационарность функционала действия. Такая формулировка используется, например, влагранжевой механике и в гамильтоновой механике. Уравнениями движения в лагранжевой механике являются уравнения Эйлера — Лагранжа, а в гамильтоновой — уравнения Гамильтона.
Независимыми переменными, описывающими состояние системы в гамильтоновой механике, являются обобщённые координаты и импульсы, а в механике Лагранжа — обобщённые координаты и их производные по времени.
Если использовать функционал действия, определённый на реальной траектории системы, соединяющей некую начальную точку с произвольной конечной, то аналогом уравнений движения будут уравнения Гамильтона — Якоби.
Следует отметить, что все формулировки классической механики, основанные на голономных вариационных принципах, являются менее общими, чем формулировка механики, основанная на уравнениях движения. Не все механические системы имеют уравнения движения, представимые в виде уравнения Эйлера — Лагранжа, уравнения Гамильтона или уравнения Гамильтона — Якоби. Тем не менее, все формулировки являются как полезными с практической точки зрения, так и плодотворными с теоретической. Лагранжева формулировка оказалась особенно полезной в теории поля и релятивистской физике, а гамильтонова и Гамильтона — Якоби — в квантовой механике.
Классическая механика
Границы применимости классической механики
В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.
Основные формулы механики в физике с пояснениями
Обновлено: 29 Июня 2021
Физика — одна из самых важных наук на Земле, которая описывает практически все известные человеку процессы и явления. В данной статье мы подробнее остановимся на ее большом разделе, который называется «механикой».
Что изучает механика в физике
Механика — это одна из физических наук, которая изучает движение тел и их взаимодействие друг с другом во время движения. Этот раздел физики описывает движение как искусственно созданных летательных аппаратов, так и физических небесных объектов; атмосферные и подводные течения; движение жидкостей и газов в природе; перемещение среды в электромагнитных полях; движение крови по сосудам и т.д.
Движение в механике — это изменение во времени и пространстве положения тел (или их частей) относительно друг друга.
Науку механику в зависимости от свойств пространства, времени и материи, на которых основывается каждая механическая теория, подразделяют на следующие виды:
Основные направления, формулы и пояснения
В механике выделяют следующие основные разделы:
Механика изучает движения материальных тел, при этом все материальные объекты делятся на 3 вида:
По предмету изучения механику подразделяют на:
Рассмотрим детальнее основные разделы механики. И начнем с кинематики.
Кинематика
Раздел кинематики отвечает на вопросы о том, как именно происходит механическое движение тела.
Механическое движение
Механическое движение — это перемещение тела с течением времени и относительно других объектов в пространстве.
Для расчета этих изменений понадобится система отсчета, которая состоит из:
В системе отсчета метр является единицей длины, а секунда — единицей времени.
Другими важными определениями в кинематике являются:
Существует 2 вида движения согласно траектории:
Поступательное и вращательное движение твердого тела
В кинематике выделяют два вида движения:
Поступательное движение — это движение твердого тела, при котором все его точки проходят одну и ту же траекторию и в любой момент времени обладают одинаковыми по направлению и величине векторами скорости и ускорения, синхронно меняющихся для любой точки объекта.
Вращательное движение — это вид механического движения, при котором материальное тело проходит траекторию окружности. При этом все точки тела описывают окружности, которые находятся в параллельных плоскостях. Центры всех окружностей находятся на одной прямой, которая перпендикулярна к плоскостям окружностей (называется осью вращения).
Кинематические уравнения движения
Определение местоположения материальной точки в пространстве можно осуществить двумя способами:
Эту зависимости можно представить в виде кинематических уравнений движения:
\(\vec r=\vec r\left(t\right)\)
Нулевой вектор на данной иллюстрации — это радиус-вектор положения точки в начальный момент времени.
Кинематические характеристики (скорость, ускорение)
Основными кинематическими характеристиками являются:
Скорость \((\vec v)\) — это векторная величина, которая характеризует направление и быстроту движения.
Среднюю скорость можно вычислить по формуле:
где \(\Delta\vec r \) — перемещение, \(\Delta t\) — время, за которое это перемещение произошло.
Символом \(∆\) обозначается разность однотипных величин или совсем маленьких интервалов.
Мгновенная скорость может быть вычислена тогда, когда \(\Delta t\rightarrow0\) и вектор перемещения совпадает с путем перемещения:
Ускорение тела (a) является величиной, равной отношению изменения скорости движения тела к длительности промежутка времени, за которое это изменение скорости произошло. Оно рассчитывается по формуле:
Мгновенным ускорение будет являться тогда, когда среднее ускорение за промежуток ∆t → 0, м/с²:
Динамика, законы Ньютона
Динамика — это раздел механики, который изучает причины изменения движения тел. Классическая механика видит причины этих изменений в воздействии на объекты различных сил. Расскажем подробно, какими параметрами и характеристиками оперирует раздел динамики.
Динамические характеристики поступательного движения
Основными характеристиками в динамике являются:
где \(m\) — масса тела, а \(\vec v\) — его скорость.
Импульс иллюстрирует, как механическое движение может передаваться от одного материального тела к другому.
Виды сил
В динамике выделяют несколько видов сил, которые могут воздействовать на объект:
Сила притяжения определяется по формуле:
где \(G\) — гравитационная постоянная, которая равна \(6,67\times10^ <-11>Н*м²/кг²\)
Сила упругости — это сила, возникающая при упругой деформации тела.
Рассчитывается она по формуле:
Силы трения возникают при движении касающихся друг друга объектов или их частей. Они бывают:
Сила сухого трения определяется по формуле:
где \(N\) — сила нормального давления, а \(k\) — коэффициент сухого трения.
Сила вязкого трения зависит от скорости движения тела ( \(v\) ) и рассчитывается по формуле:
\(α\) — коэффициент вязкого трения.
Разобрав основные динамические характеристики, можем переходить к основам динамики — законам Исаака Ньютона.
Первый закон Ньютона
Законы Ньютона, опубликованные им в 1687 году, лежат в основе механики. Они помогают описать движение тел с небольшими скоростями по сравнению со скоростью света.
Первый закон Ньютона предполагает существование таких систем отсчета, в которых материальные тела находятся в покое или движутся равномерно и по прямой, при условии, что на них нет воздействия каких-либо сил или действие этих сил скомпенсировано. Такие системы принято называть инерциальными. Все остальные законы Ньютона действительны именно для таких систем.
Первый закон Ньютона также часто называют законом инерции.
Инерция — это сохранение материальным объектом скорости и направления своего движения, при условии, что на него нет воздействия других тел и сил.
Второй закон Ньютона
Второй закон Ньютона иллюстрирует зависимость ускорения тела от его массы и силы, воздействующей на него. Причем чем больше сила, которая действует на объект, тем больше ускорение, которое тело приобретает.
Формулируется он в виде следующей формулы:
где \(\vec F\) — это векторная сила, воздействующая на объект;
\(\vec a\) — векторное ускорение тела;
Читается так: ускорение, с которым движется объект, прямо пропорционально действующей на тело силе и обратно пропорционально массе тела.
Третий закон Ньютона
Третий закон великого английского ученого предполагает, что при воздействии одного тела на другое с определенной силой, второе тело действует на первое с такой же силой. Их часто называют силами действия и противодействия.
Математически закон выражается так:
где \(\vec F_1\) — это сила действия, а \(\vec F_2\) — сила противодействия.
Формулируется так: объекты действуют друг на друга с силами, противоположными по направлению и равными по модулю.
Закон сохранения импульса
Закон сохранения импульса — это следствие из законов Ньютона: при движении тел в инерциальной системе без внешнего воздействия импульс сохраняется во времени, а при воздействии внешних сил на тело, скорость изменения импульса определяется суммой приложенных сил.
Математически это выражается так:
Точнее закон сохранения импульса можно сформулировать таким образом: векторная сумма импульсов всех тел, находящихся в системе, — величина постоянная, если внешнее воздействие на систему отсутствует или же их векторная сумма равна нулю.
Закон сохранения момента импульса
Закон сохранения момента импульса звучит так: момент импульса тел в замкнутой системе (в которой отсутствует воздействие внешних сил) относительно любой неподвижной точки не изменяется со временем.
Основное уравнение динамики вращательного движения
Работа и механическая энергия
Энергия — это способность физических объектов совершать определенную работу, поэтому количественно работа и энергия измеряются в одних и тех же единицах — джоулях (Дж).
Механическая работа будет численно равна изменениям механической энергии. Работа в механике бывает постоянной и переменной силы.
Работа постоянной и переменной силы
Сила, воздействующая на тело, когда перемещает его на определенное расстояние, совершает работу. В том случае, когда сила постоянна по величине и направлению, а движение прямолинейно, можно говорить о работе постоянной силы.
Если траектория движения объекта не прямолинейна, а сила, действующая на тело, не является постоянной, нужно говорить о работе переменной силы. Чтобы ее рассчитать, необходимо весь путь разбить на прямолинейные отрезки. Полная работа будет в таком случае равна сумме работ на всех прямолинейных участках.
Энергия
Энергия — это скалярная величина, которая является количественной мерой различных форм движения материи. Энергия, которая является мерой механического движения и механического взаимодействия тел с другими объектами и между собой, называется механической.
Изменение механической энергии системы ( \(\Delta W\) ) определяется работой ( \(A\) ), которую совершают внешние силы, воздействующие на систему:
Механическая энергия бывает двух видов:
Кинетическая
Кинетическая энергия — это скалярная функция, которая является количественной мерой движения материальных тел, рассматриваемых в конкретной механической системе. Кинетическая энергия зависит только от массы ( \(m\) ) и модуля скорости материальной точки ( \(v\) ).
Рассчитывается кинетическая энергия ( \(E\) ) по формуле:
Измеряется в джоулях.
Потенциальная
Потенциальная энергия — это физическая величина, которая обозначает энергию взаимодействия тел или их частей между собой. Потенциальная энергия зависит только от расстояния, на котором находятся объекты. Имеет числовое значение, но не имеет вектора направления.
Потенциальной энергией обладают следующие виды тел:
Потенциальная энергия тела, поднятого над землей ( \(E\) ), рассчитывается по формуле:
где \(m\) — масса тела, \(h\) — высота над землей, \(g\) — ускорение свободного падения на нашей планете.
Потенциальная энергия упруго деформированного тела ( \(E\) ) определяется по формуле:
где \(x\) — удлинение, \(k\) — жесткость.
Потенциальная энергия измеряется в джоулях.
Закон сохранения механической энергии
Закон сохранения энергии в механике известен всем со школы.
Энергия не исчезает и не возникает снова, она только переходит из одного вида энергии в другой или передается от одного объекта к другому.
Разобраться в такой сложной науке, как физика, довольно трудно. Не у всех есть время и желание вникать в процессы физических явлений. Но без паники! Подтянуть оценки по сложному предмету поможет образовательный сервис Феникс.Хелп. Обращайтесь в любое время!
Содержание:
Основная задача механики:
Представьте аварийную ситуацию: на одном пути оказались два поезда. Товарный поезд движется со скоростью 50 км/ч, а позади него, на расстоянии 1 км, едет экспресс со скоростью 70 км/ч. Машинист экспресса начинает тормозить. Неизбежна ли катастрофа? Сколько времени нужно экспрессу для остановки? Какой путь пройдет за это время товарный поезд? Какое наименьшее расстояние должен преодолеть экспресс до остановки? От чего это зависит? Вспомним, что на эти и многие другие подобные вопросы отвечает раздел физики, который называется «Механика».
Что изучает механика
Механика — наука, изучающая механическое движение тел и взаимодействия между телами.
Основная задача механики — познать законы механического движения и взаимодействия материальных тел, на основе этих законов предвидеть поведение тел и определять их механическое состояние (координаты и скорость движения) в любой момент времени (см., например, рис. 4.1).
Механика включает в себя несколько разделов, в частности кинематику — раздел механики, изучающий движение тел и при этом не рассматривающий причины, которыми это движение вызвано. Иначе говоря, кинематика не отвечает на вопросы типа: «Почему именно через 2 км остановится экспресс?», — она только описывает движение. А вот причины изменения движения тел рассматривают в разделе механики, который называется динамика.
Составляющие системы отсчета
Механическое движение — изменение со временем положения тела (или частей тела) в пространстве относительно других тел. Тело, относительно которого рассматривают движение всех тел в данной задаче, называют телом отсчета. Чтобы определить положение тела в пространстве в данный момент времени, с телом отсчета связывают систему координат, которую задают с помощью одной, двух или трех координатных осей (соответственно одномерную, двухмерную или трехмерную систему координат), и прибор для отсчета времени (часы, секундомер и т. п.).
Рис. 4.1. На перекрестке не произошло дорожнотранспортного происшествия, поскольку все участники движения правильно решили основную задачу механики
Тело отсчета, связанные с ним система координат и прибор для отсчета времени образуют систему отсчета (см. рис. 4.2).
Пока не выбрана система отсчета, невозможно утверждать, движется тело или находится в состоянии покоя. Например, люди, сидящие в троллейбусе, не движутся относительно друг друга, но вместе с троллейбусом они движутся относительно полотна дороги.
Рассмотрите рис. 4.2. Назовите тела или части тел, которые осуществляют механическое движение. Относительно каких тел вы рассматривали эти движения?
Когда размерами тела можно пренебречь
Любое физическое тело состоит из огромного количества частиц. Например, в 1 см3 воды содержится более 3 ·
Рис. 4.2. Составляющие системы отсчета: тело отсчета, система координат, прибор для отсчета времени
Материальная точка — это физическая модель тела, размерами которого в условиях данной задачи можно пренебречь. То же самое тело в условиях одной задачи можно считать материальной точкой, а в условиях другой — нельзя (см. рис. 4.3). Далее, если специально не оговорено, рассматривая движение тела и определяя его координаты, будем считать данное тело материальной точкой.
Рис. 4.3. Исследуя движение астероида Бенну по орбите, размером астероида можно пренебречь и считать его материальной точкой (а); планируя спуск на астероид робота, размерами астероида пренебрегать нельзя (б)
Воображаемая линия, в каждой точке которой последовательно находилась материальная точка во время движения, называется траекторией движения.
Так, траектория движения астероида Бенну — эллипс (желтая линия на рис. 4.3, а). Если определить длину участка траектории, которую описал астероид, например, за три земных месяца (оранжево-желтая линия на рис. 4.3, а), найдем путь l, который прошел астероид за это время (l ≈ 262 млн км). Путь — это физическая величина, равная длине траектории.
Перемещение
Проекция перемещения Соединим направленным отрезком (вектором) положение астероида в момент начала наблюдения и его положение в конце наблюдения (см. рис. 4.3, а). Этот вектор — перемещение астероида за данный интервал времени.
Перемещение — это векторная величина, которую графически представляют в виде направленного отрезка прямой, соединяющего начальное и конечное положения материальной точки. Перемещение считают заданным, если известны направление и модуль перемещения. Модуль перемещения s — это длина вектора перемещения.
Единица модуля перемещения в СИ — метр: [s] =1 м (m).
В большинстве случаев вектор перемещения не направлен вдоль траектории движения тела: путь, пройденный телом, обычно больше модуля перемещения (см. рис. 4.3, а). Путь и модуль перемещения оказываются равными, только когда тело движется вдоль прямой в неизменном направлении.
Приведите примеры движения тел, когда:
Если известны начальные координаты тела и его перемещение на данный момент времени, можно определить положение тела в этот момент времени, то есть решить основную задачу механики. Однако по формулам, записанным в векторном виде, выполнять вычисления довольно сложно, ведь приходится постоянно учитывать направления векторов. Поэтому при решении задач используют проекции вектора перемещения на оси координат (рис. 4.4).
Рис. 4.4. Координатный метод определения положения тела
В чем заключается относительность механического движения
Траектория, путь, перемещение и скорость движения тела зависят от выбора системы отсчета — в этом заключается относительность механического движения.
Убедитесь в относительности механического движения: рассмотрите движение точки A на лопасти винта вертолета при его вертикальном взлете, приняв, что за время наблюдения винт вертолета сделал три оборота (рис. 4.5).
Рис. 4.5. Траектория, путь и перемещение вертолета в разных системах отсчета
Система отсчета «Вертолет»:
Система отсчета «Земля»:
Нам кажется очевидным, что время не зависит от выбора системы отсчета. То есть интервал времени между двумя событиями имеет одно и то же значение во всех системах отсчета. Это утверждение — одна из важнейших аксиом классической механики. И это действительно так, но только тогда, когда скорость движения тела намного меньше скорости распространения света (движение именно с такими скоростями рассматривают в классической механике). Если скорость движения тела сравнима со скоростью распространения света, то время для этого тела замедляется. Движение с такими скоростями рассматривают в релятивистской механике.
Виды механического движения
Вы знаете, что по характеру движения различают равномерное и неравномерное движения, по форме траектории — прямолинейное и криволинейное движения. Внимательно рассмотрите таблицу ниже и дайте определение некоторых механических движений: равномерного прямолинейного, равномерного криволинейного, неравномерного прямолинейного, неравномерного криволинейного. Приведите собственные примеры таких движений. (Красные точки в таблице показывают положения тела через некоторые равные интервалы времени.)
Равномерное движение — движение, при котором материальная точка за любые равные интервалы времени проходит одинаковый путь
Неравномерное движение — движение, при котором материальная точка за равные интервалы времени проходит разный путь
Скорость движения. Средняя и мгновенная скорости. Законы сложения перемещений и скоростей
Переплывали ли вы реку с быстрым течением? Трудно переплыть ее так, чтобы попасть на противоположный берег прямо напротив места начала движения. А кто-то пытался подняться по эскалатору, движущемуся вниз? Тоже сложно — лучше двигаться в направлении движения эскалатора. В обоих примерах человек участвует одновременно в двух движениях. Как при этом рассчитать скорость его движения?
Равномерное прямолинейное движение тела
Самый простой вид механического движения — равномерное прямолинейное движение.
Равномерное прямолинейное движение — это механическое движение, при котором за любые равные интервалы времени тело совершает одинаковые перемещения.
Из определения равномерного прямолинейного движения следует:
Векторную физическую величину, равную отношению перемещения к интервалу времени t, за который это перемещение произошло, называют скоростью равномерного прямолинейного движения тела:
Направление вектора скорости движения совпадает с направлением перемещения тела, а модуль и проекцию скорости определяют по формулам:
Единица скорости движения в СИ — метр в секунду:
Из формулы для определения скорости можно найти перемещение тела за любой интервал времени:
Последнюю формулу будем записывать для проекций: — или для модулей: s =vt. Поскольку в данном случае скорость движения тела не изменяется со временем, то перемещение тела прямо пропорционально времени:
Для решения основной задачи механики — определения механического состояния тела в любой момент времени — запишем уравнение координаты. Поскольку , для равномерного прямолинейного движения уравнение координаты имеет вид:
,
где — начальная координата; — проекция скорости; t — время наблюдения. Для описания движения удобно использовать графики (рис. 5.1) — они так же полно описывают движение тел, как и формулы или словесное описание.
Определите скорости движения автомобиля и велосипеда, а также их перемещения за 4 с наблюдения (рис. 5.1). На каком расстоянии друг от друга они будут через 4 с после начала наблюдения?
Рис. 5.1. Графики равномерного прямолинейного движения. Велосипед и автомобиль движутся вдоль оси ОХ: велосипед — в направлении оси ОХ, автомобиль — в противоположном направлении. Турист сидит на обочине
Какую скорость показывает спидометр
Как правило, мы имеем дело с неравномерным движением. Такое движение характеризуется средней путевой скоростью, средней векторной скоростью, мгновенной скоростью (см. таблицу ниже).
Характеристики средней путевой, средней векторной, мгновенной скоростей
Приведем пример. Из соображений безопасности в населенных пунктах установлено ограничение скорости движения транспортных средств 50 км/ч. Если водитель 10 мин мчится со скоростью 80 км/ч, а следующие 10 мин «ползет в тянучке» со скоростью 20 км/ч, средняя скорость движения автомобиля не превышает 50 км/ч, вместе с тем скоростной режим водителем был нарушен, а движение автомобиля вряд ли можно считать безопасным.
Далее, говоря о скорости движения тела, будем иметь в виду его мгновенную скорость.
При прямолинейном равномерном движении мгновенная скорость все время остается неизменной и совпадает со средней векторной скоростью движения тела. В любом другом случае мгновенная скорость движения тела изменяется: по направлению — при криволинейном равномерном движении; по значению, иногда по направлению (направление может изменяться на противоположное) — при прямолинейном неравномерном движении; по направлению и значению одновременно — при криволинейном неравномерном движении.
Какую скорость движения показывает спидометр: среднюю векторную? среднюю путевую? мгновенную?
Законы сложения перемещений и скоростей
Рассмотрим движение тела в разных системах отсчета (СО). Пусть таким телом будет собака, которая движется равномерно прямолинейно по плоту, плывущему по реке (рис. 5.2).
Очевидно, что скорость движения плота равна скорости течения реки. За движением собаки следят наблюдатель и наблюдательница, причем наблюдательница находится на берегу (ловит рыбу), а наблюдатель (вместе с собакой) — на плоту. Наблюдатель и наблюдательница измеряют перемещение собаки и время ее движения. Время движения собаки для обоих наблюдателей одинаково, а вот перемещения будут отличаться. Предположим, что за некоторое время t собака перебежала на другой край плота.
Перемещение собаки относительно плота (его измерил наблюдатель) приблизительно равно по модулю ширине плота и направлено перпендикулярно течению реки. Перемещение собаки относительно берега (измеренное наблюдательницей) равно по модулю длине отрезка OA и направлено под некоторым углом к течению реки. Сам плот за это время сместился по течению и совершил перемещение относительно берега.
Рис. 5.2. К выводу закона сложения перемещений и скоростей
Из рис. 5.2 видим: . Свяжем с берегом систему координат XOY — получим неподвижную систему отсчета. С плотом свяжем систему координат X′O′Y′ — получим подвижную систему отсчета.
Теперь можно сформулировать закон сложения перемещений: Перемещение тела в неподвижной системе отсчета равно геометрической сумме перемещения тела в подвижной системе отсчета и перемещения подвижной системы отсчета относительно неподвижной:
Разделив обе части уравнения на время движения и учитывая, что , получим закон сложения скоростей:
Скорость движения тела в неподвижной системе отсчета равна геометрической сумме скорости движения тела в подвижной системе отсчета и скорости движения подвижной системы отсчета относительно неподвижной:
Обратите внимание! Движение и покой относительны, поэтому в нашем примере в качестве неподвижной можно было выбрать СО, связанную с плотом. В таком случае СО, связанная с берегом, была бы подвижной, а направление ее движения было бы противоположным направлению течения.
Пример №1
Рыбак переплывает реку на лодке, удерживая ее перпендикулярно направлению течения. Скорость движения лодки относительно воды — 4 м/с, cкорость течения реки — 3 м/с, ширина l реки — 400 м.
Определите: 1) за какое время t лодка переплывет реку и за какое время лодка переплыла бы реку, если бы не было течения; 2) модуль перемещения s и модуль скорости v движения лодки относительно берега; 3) на каком расстоянии вниз по течению от исходной точки лодка достигнет противоположного берега.
Анализ физической проблемы. В качестве неподвижной выберем СО, связанную с берегом, в качестве подвижной — СО, связанную с водой. На пояснительном рисунке изобразим векторы скорости: движения лодки относительно берега (), движения лодки относительно воды ( ), течения реки ().
Дано:
= 4 м/с, = 3 м/с, l = 400 м
Решение:
1) В СО, связанной с водой, лодка совершила перемещение , которое по модулю равно ширине реки: = l. Скорость движения лодки относительно воды . Таким образом, время движения лодки:
Видим, что время движения лодки не зависит от скорости течения реки, поэтому, если бы не было течения, лодка переплыла бы реку за то же время: = t =100 с.
2) Модуль скорости лодки относительно берега найдем по теореме Пифагора:
Лодка движется равномерно, поэтому перемещение s лодки относительно берега:
3) Зная время t движения лодки и скорость течения реки, определим расстояние , на которое лодку снесло вниз по течению:
Ответ: t== 1 мин 40 с; s = 500 м; v = 5 м/с ; = 300 м.
Физика в цифрах
Так с какой же скоростью мы движемся? Единого ответа нет — все зависит от системы отсчета!
Равноускоренное прямолинейное движение
Существуют автомобили — их называют драгстеры, — которые имеют мощность большую, чем самолет «Боинг». Представляете, какую скорость может развить такой автомобиль за короткое время? Вот показатели одного из драгстеров: за 0,5 с он развил скорость 32 м/с, за 1,0 с — 51 м/с, за 3,8 с достиг максимальной скорости — 143 м/с! Вспомним, как по этим показателям найти расстояние, которое преодолел драгстер.
Если тело движется неравномерно, скорость его движения непрерывно изменяется. Векторную физическую величину, характеризующую быстроту изменения скорости движения тела и равную отношению изменения скорости к интервалу времени, в течение которого это изменение произошло, называют ускорением движения тела:
Из курса физики 9 класса вы знаете, что равноускоренное прямолинейное движение — это движение с неизменным ускорением, то есть движение, при котором скорость движения тела изменяется одинаково за любые равные интервалы времени. Ускорение равноускоренного прямолинейного движения определяют по формуле:
где — начальная скорость движения тела; — скорость движения тела через некоторый интервал времени t.
Мы будем использовать данную формулу, записанную в проекциях на ось координат, например на ось OX:
Единица ускорения в СИ — метр на секунду в квадрате:
Рис. 6.1. Увеличение или уменьшение скорости движения тела не зависит от выбора направления оси ОХ, а зависит от направления действия силы
Рис. 6.2. Графики зависимости ax(t) для равноускоренного прямолинейного движения
Скорость равноускоренного прямолинейного движения
Из формулы для проекции ускорения получим уравнение проекции скорости для равноускоренного прямолинейного движения:
Зависимость является линейной, поэтому график проекции скорости — график зависимости — это отрезок прямой, наклоненной под некоторым углом к оси времени (рис. 6.3, 6.4).
Рис. 6.3. Графики зависимости для равноускоренного прямолинейного движения. Тело 1 все время набирает скорость, поскольку . Тело 2 сначала замедляет свое движение, поскольку (участок AB), затем останавливается (точка B), после чего увеличивает скорость , двигаясь в противоположном направлении (участок BC)
Чем больше ускорение движения тела, тем больше угол a наклона графика проекции скорости к оси времени (см. рис. 6.4).
Рис. 6.4. Болид движется с большим ускорением, чем автомобиль, поэтому . Ускорение движения велосипедиста равно нулю
Перемещение при равноускоренном прямолинейном движении
Вы уже знаете о геометрическом смысле проекции перемещения: перемещение тела численно равно площади фигуры под графиком зависимости проекции скорости движения тела от времени. Мы доказывали это утверждение для равномерного движения. Рассмотрим пример равноускоренного движения:
Видим, что при равноускоренном движении проекция перемещения численно равна площади трапеции под графиком зависимости (формулу для определения площади трапеции вы знаете из курса геометрии):
Приняв во внимание, что , получим уравнение зависимости проекции перемещения от времени для равноускоренного прямолинейного движения:
При таком движении начальная скорость () и ускорение () движения тела не изменяются, поэтому зависимость проекции перемещения sx от времени t является квадратичной, а график этой зависимости — парабола, вершина которой соответствует точке разворота (рис. 6.5). Во многих задачах речь не идет о времени движения тела.
В таких случаях для расчета неизвестных величин используют формулу:
Получите последнюю формулу самостоятельно, воспользовавшись формулой и определением ускорения.
Координату тела при любом движении определяют по формуле , поэтому для равноускоренного прямолинейного движения уравнение координаты имеет вид:
Свободное падение и криволинейное движение под действием постоянной силы тяжести
«Человек — пушечное ядро» — цирковой номер с таким названием впервые был показан в 1877 г. в Лондоне. 16-летнюю воздушную гимнастку поместили в дуло «пушки», произвели выстрел, и девушка, пролетев над головами восхищенных зрителей, опустилась на страховочную сетку. Современные аналогичные «пушки» — это огромные пневматические пистолеты. Как они работают, предлагаем вам узнать самостоятельно, а сейчас рассмотрим, на какие законы опираются создатели подобных аттракционов.
Аристотель утверждал: чем тело тяжелее, тем быстрее оно падает на Землю. Однако вы знаете: так будет, если движение примерно одинаковых по размеру тел будет происходить в воздухе, а вот при отсутствии воздуха все тела — независимо от их массы, объема, формы — падают на Землю одинаково (рис. 7.1). Падение тел в безвоздушном пространстве, то есть падение только под действием силы тяжести, называют свободным падением.
В случае свободного падения все тела падают на Землю с одинаковым ускорением — ускорением свободного падения ().
Свободное падение каких тел мы будем рассматривать:
Характер движения тела в поле тяготения Земли достаточно сложен (рис. 7.2), и его описание выходит за рамки школьной программы. Поэтому примем ряд упрощений.
Как движется тело, брошенное вертикально
Наблюдая за движением небольших тяжелых тел, брошенных вертикально вниз или вертикально вверх либо падающих без начальной скорости, видим, что траектория их движения — отрезок прямой. К тому же эти тела движутся с неизменным ускорением.
Движение тела, брошенного вертикально вверх или вниз, — это равноускоренное прямолинейное движение с ускорением, равным ускорению свободного падения:
Вспомним формулы, описывающие равноускоренное прямолинейное движение, учтем, что при описании движения тела по вертикали векторы скорости, ускорения и перемещения традиционно проецируют на ось OY, и получим ряд формул, которыми описывают свободное падение тел (см. таблицу).
Формулы для расчета кинематических характеристик свободного падения
Равноускоренное движение вдоль оси OX | Свободное падение вдоль оси OY |
Проекция скорости движения | |
Проекция перемещения | |
Уравнение координаты | |
Пример №2
С вертолета, который висит на высоте 45 м над озером, сбросили небольшой тяжелый предмет. 1) Через какой интервал времени предмет упадет в озеро? 2) Какой будет скорость движения предмета в момент касания воды? 3) Определите соотношение перемещений предмета за любые равные интервалы времени ∆t.
Анализ физической проблемы. Выполним пояснительный рисунок (рис. 1). Ось OY направим вертикально вниз. Начало координат пусть совпадает с положением тела в момент начала падения. Скорость движения тела в этот момент равна нулю.
Решение:
Запишем уравнения проекции перемещения и проекции скорости движения тела:
Конкретизируем эти уравнения (перейдем от проекций к модулям). Из рис. 1 видно:
Проверим единицы, найдем значения искомых величин:
Для ответа на вопрос 3 воспользуемся геометрическим смыслом перемещения (рис. 2).
Свободное падение тел — равноускоренное прямолинейное движение, поэтому график зависимости — это отрезок прямой, который начинается в точке . Видим, что за первый интервал времени ∆t перемещение тела численно равно площади одного треугольника (площадь фигуры под графиком): ; за второй интервал времени ∆t — площади трех треугольников: ; за третий интервал времени ∆t — площади пяти треугольников: и т. д.
Ответ:
Если тело свободно падает без начальной скорости, перемещения тела за равные последовательные интервалы времени относятся как нечетные числа:
Это свойство касается любого равноускоренного движения без начальной скорости. Так, если за первую секунду тело прошло 5 м, за вторую оно пройдет 3 5⋅ =15 м, за третью — 5 5⋅ = 25 м, за четвертую — 7⋅5=35 м и т. д.
Что падает быстрее:
Представим, что с моста в горизонтальном направлении бросили каштан и в то же мгновение выпустили из руки второй каштан. Какой каштан упадет в воду быстрее? На самом деле оба каштана, если им ничего не помешает, упадут в воду одновременно.
Итак, движению тела в вертикальном направлении «не мешает» его движение в горизонтальном направлении, и наоборот. В данном случае мы имеем дело с проявлением принципа независимости движений, в соответствии с которым любое сложное движение можно рассматривать как сумму двух (или более) простых движений. Воспользовавшись специальным устройством и видеокамерой мобильного телефона, можем легко подтвердить это (рис. 7.3).
Рис. 7.3. Шарик 1, свободно падающий без начальной скорости, и шарик 2, брошенный горизонтально, все время находятся на одинаковой высоте и на пол падают одновременно
Движение тел, брошенных горизонтально или под углом к горизонту
Воспользовавшись принципом независимости движений, рассмотрим движение тела, которому вблизи поверхности Земли сообщена некоторая не вертикальная скорость. Напомним: сопротивление воздуха будем считать пренебрежимо малым, то есть движение происходит только под действием силы тяжести с ускорением . Такое движение удобно рассматривать как результат сложения двух независимых движений (рис. 7.4):
Таким образом, траектория движения тела, которому вблизи поверхности Земли сообщена начальная скорость, является параболической (рис. 7.5).
Рис. 7.5. Траектория тела, брошенного горизонтально или под углом к горизонту, является параболической, а ее кривизна зависит от модуля и направления начальной скорости
Пример №3
Мотоциклист, двигавшийся горизонтально по горной дороге со скоростью 15 м/с, не затормозил перед поворотом, и его мотоцикл упал в сугроб с высоты 20 м. 1) Сколько времени падал мотоцикл? 2) Какова горизонтальная дальность полета мотоцикла? Как, по вашему мнению, изменится ли эта дальность в реальной ситуации? Сопротивлением воздуха пренебречь.
Решение:
Выберем систему отсчета: начало координат свяжем с местом, где мотоцикл начал падение, ось OY направим вертикально вниз, ось ОХ — в направлении начальной скорости t движения мотоцикла (см. рисунок). —
В выбранной системе отсчета движение:
вдоль оси ОХ — равномерное:
вдоль оси ОY — равноускоренное:
Следовательно, уравнения (1) и (2) принимают вид:
Обратите внимание! Выделенные формулы справедливы для описания движения любого горизонтально брошенного тела.
1) Определим время падения мотоцикла:
2) Вычислим дальность полета:
Проанализируем результат. Очевидно, что в реальной ситуации дальность полета будет меньше, ведь движению мешает сопротивление воздуха. Однако это не означает, что падение будет более безопасным. Будьте осторожны и внимательны на дорогах!
Ответ: t = 2 с; L = 30 м.
Движение тела, брошенного под углом к горизонту
Прочитав о рекордах скорости спортивных снарядов, ученица решила выяснить, какую скорость она придает футбольному мячу. Для этого девочка ударила по мячу, направив его под углом 45° к горизонту (см. рис. 7.6). Мяч упал на землю на расстоянии 40 м от ученицы. Выполнив расчеты, девочка решила, что она придала мячу скорость 20 м/с, а мяч поднялся на высоту 8 м. Не ошиблась ли юная футболистка?
Рис. 7.6. По направлению и дальности полета мяча можно определить, какую скорость вы придали мячу при ударе или броске
Пример №4
Решение:
Выполним пояснительный рисунок (рис. 1): начало координат свяжем с точкой на поверхности Земли, где мяч оторвался от бутсы футболистки; ось OY направим вертикально вверх; ось ОХ — горизонтально.
В выбранной системе отсчета движение:
Поэтому уравнения (1) и (2) принимают вид:
Время движения мяча до верхней точки траектории (точки А) найдем из условия . :
Координата y мяча в точке А — это максимальная высота подъема мяча:
После подстановки получаем формулы для определения максимальной высоты подъема и общего времени движения мяча:
Дальность L полета мяча равна координате х тела в конце движения (x=L) :
Поскольку .
Обратите внимание! Из последней формулы следует:
Равномерное движение по окружности
Каковы особенности криволинейного движения
Движение по окружности — это криволинейное движение, а любое криволинейное движение гораздо сложнее прямолинейного.
Что такое линейная скорость
Скалярную физическую величину, которая характеризует криволинейное движение и равна средней путевой скорости, измеренной за бесконечно малый интервал времени, называют линейной скоростью движения тела:
Поскольку для очень малых интервалов времени модуль перемещения (∆s) приближается к длине участка траектории (∆l) (см. рис. 8.1), линейная скорость в данной точке равна модулю мгновенной скорости. Именно линейную скорость имеют в виду, когда, например, характеризуют движение автомобиля на повороте, описывают движение частицы в ускорителе, говорят о скорости полета искусственных спутников Земли и т. п.
Рис. 8.2. Скорости движения искр фейерверка, брызг из-под колес автомобиля, металлических опилок направлены по касательной к окружности. Именно в этом направлении частицы продолжают свое движение после отрыва
Со временем линейная скорость может оставаться неизменной, а может изменяться. В зависимости от этого в физике рассматривают равномерное криволинейное движение (движение с постоянной линейной скоростью) и неравномерное криволинейное движение (движение с изменяющейся линейной скоростью). При равномерном криволинейном движении за любые равные интервалы времени тело проходит одинаковый путь, потому линейную скорость движения тела можно определить по формуле:
где l — путь, пройденный телом за время t. Описывать криволинейное движение достаточно сложно, ведь форм криволинейных траекторий — множество. Однако практически любую сложную криволинейную траекторию можно представить как совокупность дуг различных радиусов, а криволинейное движение рассматривать как движение по окружности (рис. 8.3).
Рассмотрим самый простой вид криволинейного движения — равномерное движение по окружности.
Равномерное движение по окружности
Равномерное движение тела по окружности — это такое криволинейное движение, при котором траекторией движения тела является окружность, а линейная скорость не изменяется со временем. Из курса физики 7 класса вы знаете, что равномерное движение по окружности достаточно часто является периодическим движением, а следовательно, характеризуется такими физическими величинами, как период и частота.
Период вращения Т — физическая величина, равная интервалу времени, за который тело совершает один оборот: (N — число оборотов за интервал времени t). Единица периода вращения в СИ — секунда: [T] = 1 c.
Частота вращения n — физическая величина, численно равная количеству оборотов тела за единицу времени: . Единица частоты вращения в СИ — оборот в секунду:
Период и частота вращения — взаимно обратные величины: . Зная период вращения и радиус круговой траектории, легко определить линейную скорость v равномерного движения тела по окружности. Действительно, за время одного оборота (t=T) тело проходит путь, равный длине окружности: l=2πr. Поскольку , имеем: (1)
Для характеристики равномерного движения тела по окружности кроме линейной скорости часто используют угловую скорость.
Угловая скорость — это физическая величина, численно равная углу поворота радиуса за единицу времени:
где ω — угловая скорость; ϕ — угол поворота радиуса за интервал времени t (рис. 8.4). Единица угловой скорости в СИ — радиан в секунду:
.
Рис. 8.4. Равномерное движение тела по окружности: r — радиус окружности; v — вектор мгновенной скорости в точке B; ϕ — угол поворота радиуса
За время, равное одному периоду (t=T), радиус совершает один оборот (ϕ = 2π), поэтому угловую скорость можно вычислить по формуле: (2)
Из формул (1) и (2) следует, что угловая и линейная скорости связаны соотношением:
Почему при равномерном движении тела по окружности ускорение называют центростремительным
Определим направление ускорения при равномерном движении тела по окружности. По определению , поэтому направления векторов ускорения и изменения скорости совпадают . Определим направление вектора изменения скорости (рис. 8.5, а). Видим, что вектор направлен к середине окружности, так же направлен и вектор ускорения . Докажем, что вектор направлен непосредственно к центру окружности, то есть вдоль радиуса. Поскольку мгновенная скорость движения тела направлена по касательной, а касательная перпендикулярна радиусу r, нужно доказать, что .
Рис. 8.5. Определение направления ускорения равномерного движения тела по окружности
Доказательство проведем методом от противного. Допустим, что вектор ускорения (серая стрелка на рис. 8.5, б) не перпендикулярен вектору мгновенной скорости . Однако в таком случае скорость тела будет увеличиваться, если > 0, и уменьшаться, если
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.