Что изучает космология в астрономии кратко
Космология
Космоло́гия (космос + логос) — раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика и астрономия.
Содержание
История космологии
Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.
Китай
Археологические находки позволяют утверждать, что прообразом космоса мог считаться панцирь сухопутной черепахи, щитки которого делят плоскость земли на квадраты.
Европейская античность
Большинство древнегреческих учёных поддерживали геоцентрическую систему мира, согласно которой в центре Вселенной находится неподвижная шарообразная Земля, вокруг которой обращаются пять планет, Солнце и Луна. Предложенная Аристархом Самосским гелиоцентрическая система мира, по видимому, не получила поддержки большинства древнегреческих астрономов.
Многие досократики полагали, что движением светил управляет гигантский вихрь, давший начало Вселенной. Oднaко после Аристотеля большинство античных астрономов считали, что планеты переносятся в своём движении материальными сферами, состоящими из особого небесного элемента — эфира, свойства которого не имеют ничего общего с элементами земли, воды, воздуха и огня, составляющих «подлунный мир». Широко было распространено мнение о божественной природе небесных сфер или светил, их одушевлённости.
Средневековье
В Средние века в астрономии и философии как христианских, так и мусульманских стран доминировала космология Аристотеля, дополненная птолемеевой теорией движения планет, вместе с представлением о материальных небесных сферах. Некоторые философы XIII—XIV вв. считали, что бесконечно всемогущий Бог мог создать, помимо нашего, и другие миры [3] ; тем не менее, эта возможность считалась сугубо гипотетической: хотя Бог и мог создать другие миры, он не сделал этого. Некоторые философы (например, Томас Брадвардин и Николай Орем) считали, что за пределами нашего мира находится бесконечное пространство, служащее обителью Бога (модификация космологии герметистов, также полагавших внемировое пространство относящимся к духовной сфере [4] ).
Эпоха Возрождения
Возникновение современной космологии
Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл 3 предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.
В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва.
Космология
Космоло́гия (космос + логос ) — раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика и астрономия.
Содержание
История космологии
Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.
Китай
Европейская античность
Большинство древнегреческих учёных поддерживали геоцентрическую систему мира, согласно которой в центре Вселенной находится неподвижная шарообразная Земля, вокруг которой обращаются пять планет, Солнце и Луна. Предложенная Аристархом Самосским гелиоцентрическая система мира, по-видимому, не получила поддержки большинства древнегреческих астрономов.
Средневековье
В Средние века в астрономии и философии как христианских, так и мусульманских стран доминировала космология Аристотеля, дополненная птолемеевой теорией движения планет, вместе с представлением о материальных небесных сферах. Некоторые философы XIII—XIV вв. считали, что бесконечно всемогущий Бог мог создать, помимо нашего, и другие миры [3] [4] ; тем не менее, эта возможность считалась сугубо гипотетической: хотя Бог и мог создать другие миры, он не сделал этого. Некоторые философы (например, Томас Брадвардин и Николай Орем ) считали, что за пределами нашего мира находится бесконечное пространство, служащее обителью Бога (модификация космологии герметистов, также полагавших внемировое пространство относящимся к духовной сфере [5] ).
Эпоха Возрождения
Вселенная Джордано Бруно (иллюстрация из книги Кеплера Краткое изложение коперниковой астрономии, 1618 г.). Символом M отмечен наш мир.
Возникновение современной космологии
Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл 3 предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный « космологический член ». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.
Возраст Вселенной
Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели.
Основные этапы развития Вселенной
Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация [16] :
Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.
Карта микроволнового излучения, построенная WMAP
WMAP (Wilkinson Microwave Anisotropy Probe) — космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной.
Данные WMAP показали, что распределение температуры реликтового излучения по небесной сфере соответствует полностью случайным флуктуациям с нормальным распределением. Параметры функции, описывающей измеренное распределение, согласуются с моделью Вселенной, состоящей:
Данные WMAP позволяют утверждать, что тёмная материя является холодной (то есть состоит из тяжёлых частиц, а не из нейтрино или каких-либо других лёгких частиц). В противном случае лёгкие частицы, движущиеся с релятивистскими скоростями, размывали бы малые флуктуации плотности в ранней Вселенной.
Среди других параметров, из данных WMAP определены (исходя из ΛCDM-модели, то есть фридмановской космологической модели с Λ-членом и холодной тёмной материей англ. Cold Dark Matter ) [17] :
Понятие космологии с точки зрения науки
Исторические аспекты становления данной науки
Ещё в начале XX века, перед тем как заявить о своем открытии, учёный должен был не только теоретически, но и практически доказать уникальность результатов. Но вернемся в древние века, когда люди только начинали делать свои первые шаги в астрономии. Ещё в Древнем Египте, Китае, Индии, Греции ученые занимались наблюдением за небесными явлениями. Благодаря этому был создан лунный календарь, по которому очень длительное время ориентировались жители Земли.
Античная космология была основана на различных мифах и легендах. Аристотель был основателем теории гомоцентрических сфер: наша планета лежит на поверхности полой сферы, центр которой является центром Земли. Именно поэтому тогда была очень популярна модель божественного происхождения Земли. В дальнейшем происходило изменение учений с каждым последующим веком. Древние физики утверждали, что вокруг Земли происходит движение планет, а сама она находится непосредственно в центре самой Вселенной. Однако все это было лишь теорией, практических подтверждений на тот момент не было.
Современное развитие космологии как науки
Лишь в XV веке Николаю Копернику удалось обобщить все существовавшие на тот момент знания. Согласно его теории, в центре нашей Вселенной находится Солнце, вокруг которого постоянно движутся планеты, в том числе и Земля с Луной. В основу своей теории Коперник положил утверждения таких учёных, как Аристарх Самосский, Леонардо да Винчи, Гераклит и Кузо.
Ещё один большой шаг в развитии этой науки был сделан Кеплером. Он создал свои известные три теории, которые в дальнейшем использовал Исаак Ньютон для своих законов динамики. Именно благодаря этим законам люди увидели абсолютно другой подход к движению планет во Вселенной. Таким образом, можно сделать вывод, что космология и физика были очень тесно связаны между собой. Космология кратко дает общие понятия процессов, происходящих в нашей Вселенной.
Основные концептуальные взгляды космологии
Ещё древние люди искали ответ на вопрос: «Какое место наш окружающий мир занимает в самой Вселенной?» В Библии было написано, что наша Вселенная в самом начале была абсолютно невидимой и непримечательной. Эйнштейн утверждал, что Вселенная не движется и находится в стационарном положении. Однако позднее ученый Фридман доказал, что за счёт определенного движения происходит ее постепенное сужение и расширение. С помощью результатов исследований, полученных астрономом Хабблом, были с точностью измерены расстояния до галактик. Именно благодаря его открытиям и возникла так называемая теория Большого взрыва.
Основы теории Большого взрыва
Согласно ее положениям, начинать отсчет возраста Вселенной нужно с момента ядерного взрыва. Таким образом, ученые получили результат в 13 млрд лет. На сегодняшний день положения астрофизики для космологии имеют только теоретический аспект. В первые секунды после Большого взрыва произошло развитие частиц под названием «кванты», затем спустя время стали появляться кварки, которые имели разные виды взаимодействий. Лишь спустя 0,01 с после взрыва начали свое развитие различные звёзды, галактики и собственно сама Солнечная система.
Что изучает космология?
Понятие Вселенной в космологии
Исходя из утверждений ученых, Вселенная состоит из определенных структур: галактик, звёзд и планет. Каждая из них прошла определенную эволюцию:
Самой изученной частью на данный момент является метагалактика. Это объединение большого числа галактик, которые находятся в поле зрения астронавтов. Их распределение неравномерно, что экспериментально доказано в астрономии. На сегодняшний день учёные занимаются изучением большого пространства, в котором абсолютно отсутствуют галактики. По возрасту метагалактика приближена к Вселенной.
Таким образом, можно сделать вывод, что космология Вселенной на сегодняшний день обладает очень многими знаниями, однако в тоже время таит в себе много загадок. разгадать которые под стать только самым гениальным учёным.
Проблемы теории Большого взрыва
Например, во времена учений Эйнштейна и Фридмана плотность Вселенной могла иметь любое значение. Сегодня научно доказано, что эта величина составляет критическое значение ркр. Таких примеров можно привести огромное количество.
Существует ряд основных проблем космологии, которые остаются актуальными на сегодняшний день:
Различие между астрономией и космологией
Однако даже на сегодняшний день многие ученые считают, что космология является частью астрономии и не относят её к отдельным направлениям.
В современной науке сделано много открытий, которые позволяют расширить знания о нашей Вселенной. Некоторые из теорий подтверждены учеными мира экспериментально. Однако остается ещё много задач, которые требует тщательного изучения и материальной базы. Даже сегодня не существует единого мнения, что собой представляет Вселенная, из какого вещества она состоит. Это и является одним из заданий учёных в области не только космологии, но и сопутствующих ей наук. Знания об окружающем нас мире растут в геометрической прогрессии, но наряду с ними появляется все больше дополнительных вопросов. Для космологии это можно считать нормальным путём развития и становления как отдельной науки.
Космология
Космология — это наука, которая отвечает на вопросы, как образовалась Вселенная, из чего она состоит, каким образом развивается и каково её будущее. Космология также является подразделом двух других наук — астрономии и астрофизики.
Космолог — это учёный, который изучает космологию; занимается такими понятиями как:
Возникновение космологии как науки связывают с появлением теории относительности, которая была разработана Альбертом Эйнштейном (опубликована в 1915 году). Позже в 1922 году идеи Эйнштейна о неизменяющейся Вселенной были опровергнуты физиком и математиком Александром Фридманом.
Говоря о появлении космологии как науки, невозможно не упомянуть открытие американского учёного-астронома Веста Мелвина Слайфера в 1912–1914 годах. Он обнаружил красное смещение.
Что изучает космология?
Космологи занимаются вопросами происхождения и эволюции Вселенной. Это включает прошлое — момент Большого взрыва, настоящее, и прогноз будущего.
Космология изучает научным путём крупномасштабные свойства Вселенной как одно целое. Используя научный метод, космология стремится понять происхождение, развитие и будущее всей Вселенной.
Космология изучает теории и научным путём пытается доказать их правильность. Основной теорией возникновения Вселенной является теория Большого взрыва.
Космология и космогония (отличия)
Космология изучает крупномасштабные свойства Вселенной, включая теории о её происхождении, эволюции и прогнозе будущего. Космология изучает структуру и изменения в нынешней Вселенной. В то время как космогония занимается вопросами происхождения Вселенной. Она исследует научным путём происхождение космоса и самой реальности.
Теория Большого взрыва
После взрыва Вселенная охлаждалась. Потом образовались атомы. Материи стали притягиваться друг к другу, образуя газовые скопления, из которых затем появились звёзды, свехновые звёзды, чёрные дыры и галактики.
Красное смещение
Весто Слайфер открыл, что на фотографических изображениях спектра (спектрограммах) галактик, особенно тех, которые расположены далеко от нашей галактики, много красного цвета. Такое смещение в сторону красного цвета было названо красным смещением.
Красное смещение означает, что галактики двигаются: вращаются и удаляются. Это, в свою очередь, говорит о том, что Вселенная расширяется.
Закон Хаббла (или закон красного смещения)
В 1929 году Эдвин Хаббл обнаружил, что есть связь между скоростью, с которой далёкие галактики движутся в противоположную от нашей галактики сторону, и расстоянием до этих галактик.
Он вывел формулу, которая позволяет рассчитать скорость галактики и расстояние до Земли. Это открытие было названо законом Хаббла (также закон красного смещения).
Несмотря на то, что этот закон действует только для далёких галактик, он позволил подтвердить, что Вселенная расширяется. С помощью закона Хаббла можно вычислить момент, когда Вселенная начала расширяться. Это позволило учёным выяснить возраст Вселенной — 13,8 миллиардов лет.
Учёные пришли к выводу, что до образования Вселенной была сингулярность.
Сингулярность
Согласно общей теории относительности в центре чёрной дыры находится сингулярность. Это область, где нет времени и не применимы законы физики. Область, где всё сжимается до крошечных размеров под высоким давлением.
В космологии есть три понятия: космологическая сингулярность, гравитационная сингулярность и голая сингулярность.
Космологическая сингулярность
Гравитационная сингулярность
Это место в пространственно-временном континууме, через которое нельзя провести кривую (геодезическую линию), и где не работают законы теории относительности.
В физике, в частности по общей теории относительности, тела, обладающие малым зарядом и массой, движутся по геодезической линии пространственно-временного континуума.
Но в гравитационной сингулярности законы физики не применяются. Поэтому и линии провести невозможно.
Голая сингулярность
Это некая область в пространственно-временном континууме, в которой не действует один из общих принципов в физике — принцип причинности.
Этот принцип формулирует, как происшествия или действия воздействуют друг на друга. То есть согласно ему будущие действия не могут изменять происшествия в прошлом.
Иными словами, наше будущее не воздействует на наше прошлое и не обуславливает его.
По версиям физиков, попав в голую сингулярность, можно увидеть и прошлое, и будущее. Но чтобы туда попасть, нужно попасть в чёрную дыру, что делает опыты по изучению такой сингулярности довольно затруднительными, так как из чёрной дыры нельзя выбраться.
Теория относительности
Альберт Эйнштейн формулирует в 1905 году специальную теорию относительности и общую теорию относительности в 1915–1916 годах.
Специальная теория относительности
Если два объекта движутся прямолинейно и с постоянной скоростью, то ни один из них не может быть системой отсчёта. Важно определять их движение только относительно друг друга.
Общая теория относительности
Эйнштейн пытался объяснить, откуда берётся гравитация. Согласно его теории крупные тела искажают пространственно-временной континуум. Это приводит к возникновению гравитации.
Уравнение Александра Фридмана
Александр Фридман вывел уравнение, которое доказывает, что Вселенная изменяется. Математическим путём учёный доказал, что Вселенная увеличивается и что она точно с чего-то началась.
Позднее его теории были подтверждены с помощью закона Хаббла.
Космология в философии
В 1960 году космология широко рассматривалась как раздел философии, но стала играть намного большую роль как подраздел астрофизики и астрономии.
Философия космологии стремится найти способы познания Вселенной, учитывая, что на данный момент человечеству известна только одна Вселенная, и мы не можем проводить над ней классические эксперименты (сравнение с другими данными — другими Вселенными). Также философия космологии ищет последствия и значения, если таковые имеются.
КОСМОЛОГИЯ
КОСМОЛОГИЯ – раздел астрономии и астрофизики, изучающий происхождение, крупномасштабную структуру и эволюцию Вселенной. Данные для космологии в основном получают из астрономических наблюдений. Для их интерпретации в настоящее время используется общая теория относительности А.Эйнштейна (1915). Создание этой теории и проведение соответствующих наблюдений позволило в начале 1920-х годов поставить космологию в ряд точных наук, тогда как до этого она скорее была областью философии. Сейчас сложились две космологические школы: эмпирики ограничиваются интерпретацией наблюдательных данных, не экстраполируя свои модели в неизученные области; теоретики пытаются объяснить наблюдаемую Вселенную, используя некоторые гипотезы, отобранные по принципу простоты и элегантности. Широкой известностью пользуется сейчас космологическая модель Большого взрыва, согласно которой расширение Вселенной началось некоторое время тому назад из очень плотного и горячего состояния; обсуждается и стационарная модель Вселенной, в которой она существует вечно и не имеет ни начала, ни конца.
КОСМОЛОГИЧЕСКИЕ ДАННЫЕ
Под космологическими данными понимают результаты экспериментов и наблюдений, имеющие отношение к Вселенной в целом в широком диапазоне пространства и времени. Любая мыслимая космологическая модель должна удовлетворять этим данным. Можно выделить 6 основных наблюдательных фактов, которые должна объяснить космология:
1. В больших масштабах Вселенная однородна и изотропна, т.е. галактики и их скопления распределены в пространстве равномерно (однородно), а их движение хаотично и не имеет явно выделенного направления (изотропно). Принцип Коперника, «сдвинувшего Землю из центра мира», был обобщен астрономами на Солнечную систему и нашу Галактику, которые также оказались вполне рядовыми. Поэтому, исключая мелкие неоднородности в распределении галактик и их скоплений, астрономы считают Вселенную такой же однородной везде, как и вблизи нас.
2. Вселенная расширяется. Галактики удаляются друг от друга. Это обнаружил американский астроном Э.Хаббл в 1929. Закон Хаббла гласит: чем дальше галактика, тем быстрее она удаляется от нас. Но это не означает, что мы находимся в центре Вселенной: в любой другой галактике наблюдатели видят то же самое. С помощью новых телескопов астрономы углубились во Вселенную значительно дальше, чем Хаббл, но его закон остался верен.
3. Пространство вокруг Земли заполнено фоновым микроволновым радиоизлучением. Открытое в 1965, оно стало, наряду с галактиками, главным объектом космологии. Его важным свойством является высокая изотропность (независимость от направления), указывающая на его связь с далекими областями Вселенной и подтверждающая их высокую однородность. Если бы это было излучение нашей Галактики, то оно отражало бы ее структуру. Но эксперименты на баллонах и спутниках доказали, что это излучение в высшей степени однородно и имеет спектр излучения абсолютно черного тела с температурой около 3 К. Очевидно, это реликтовое излучение молодой и горячей Вселенной, сильно остывшее в результате ее расширения.
4. Возраст Земли, метеоритов и самых старых звезд немногим меньше возраста Вселенной, вычисленного по скорости ее расширения. В соответствии с законом Хаббла Вселенная всюду расширяется с одинаковой скоростью, которую называют постоянной Хаббла Н. По ней можно оценить возраст Вселенной как 1/Н. Современные измерения Н приводят к возрасту Вселенной ок. 20 млрд. лет. Исследования продуктов радиоактивного распада в метеоритах дают возраст ок. 10 млрд. лет, а самые старые звезды имеют возраст ок. 15 млрд. лет. До 1950 расстояния до галактик недооценивались, что приводило к завышенному значению Н и малому возрасту Вселенной, меньшему возраста Земли. Чтобы разрешить это противоречие, Г.Бонди, Т.Голд и Ф.Хойл в 1948 предложили стационарную космологическую модель, в которой возраст Вселенной бесконечен, а по мере ее расширения рождается новое вещество.
5. Во всей наблюдаемой Вселенной, от близких звезд до самых далеких галактик, на каждые 10 атомов водорода приходится 1 атом гелия. Кажется невероятным, чтобы всюду местные условия были столь одинаковы. Сильная сторона модели Большого взрыва как раз в том, что она предсказывает везде одинаковое соотношение между гелием и водородом.
6. В областях Вселенной, удаленных от нас в пространстве и во времени, больше активных галактик и квазаров, чем рядом с нами. Это указывает на эволюцию Вселенной и противоречит теории стационарной Вселенной.
КОСМОЛОГИЧЕСКИЕ МОДЕЛИ
Любая космологическая модель Вселенной опирается на определенную теорию гравитации. Таких теорий много, но лишь некоторые из них удовлетворяют наблюдаемым явлениям. Теория тяготения Ньютона не удовлетворяет им даже в пределах Солнечной системы. Лучше всех согласуется с наблюдениями общая теория относительности Эйнштейна, на основе которой русский метеоролог А.Фридман в 1922 и бельгийский аббат и математик Ж.Леметр в 1927 математически описали расширение Вселенной. Из космологического принципа, постулирующего пространственную однородность и изотропность мира, они получили модель Большого взрыва. Их вывод подтвердился, когда Хаббл обнаружил связь между расстоянием и скоростью разбегания галактик. Второе важное предсказание этой модели, сделанное Г.Гамовым, касалось реликтового излучения, наблюдаемого сейчас как остаток эпохи Большого взрыва. Другие космологические модели не могут так же естественно объяснить это изотропное фоновое излучение.
Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – ок. 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечные плотность и температуру; такое состояние называют сингулярностью.
Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной. По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной.
Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.
Вот при таких условиях немыслимо высокой температуры и плотности состоялось рождение Вселенной. Причем это могло быть рождением в прямом смысле: некоторые космологи (скажем, Я.Б.Зельдович в СССР и Л.Паркер в США) считали, что частицы и гамма-фотоны были рождены в ту эпоху гравитационным полем. С точки зрения физики, этот процесс мог состояться, если сингулярность была анизотропной, т.е. гравитационное поле было неоднородным. В этом случае приливные гравитационные силы могли «вытащить» из вакуума реальные частицы, создав таким образом вещество Вселенной.
Согласно другой точке зрения, количество типов массивных элементарных частиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений. В принципе это можно было бы проверить: если бы составляющие адронов – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи. Но поиск кварков оказался тщетным; скорее всего, они нестабильны.
После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е. электронов, позитронов, мезонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 10 10 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохранившихся с предшествующей эпохи протонов и нейтронов. Так завершилась лептонная эра.
Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду фотонов. Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.
Нерешенные проблемы космологии Большого взрыва.
Можно отметить 4 проблемы, стоящие сейчас перед космологической моделью Большого взрыва.
1. Проблема сингулярности: многие сомневаются в применимости общей теории относительности, дающей сингулярность в прошлом. Предлагаются альтернативные космологические теории, свободные от сингулярности.
2. Тесно связана с сингулярностью проблема изотропности Вселенной. Кажется странным, что начавшееся с сингулярного состояния расширение оказалось столь изотропным. Не исключено, правда, что анизотропное вначале расширение постепенно стало изотропным под действием диссипативных сил.
3. Однородная на самых больших масштабах, на меньших масштабах Вселенная весьма неоднородна (галактики, скопления галактик). Трудно понять, как одна лишь гравитация могла привести к появлению такой структуры. Поэтому космологи изучают возможности неоднородных моделей Большого взрыва.
4. Наконец, можно спросить, каково будущее Вселенной? Для ответа необходимо знать среднюю плотность материи во Вселенной. Если она превосходит некоторое критическое значение, то геометрия пространства-времени замкнутая, и в будущем Вселенная непременно сожмется. Замкнутая Вселенная не имеет границ, но ее объем конечен. Если плотность ниже критической, то Вселенная открыта и будет расширяться вечно. Открытая Вселенная бесконечна и имеет только одну сингулярность вначале. Пока наблюдения лучше согласуются с моделью открытой Вселенной.
Происхождение крупномасштабной структуры.
У космологов на эту проблему есть две противоположные точки зрения.
Самая радикальная состоит в том, что вначале был хаос. Расширение ранней Вселенной происходило крайне анизотропно и неоднородно, но затем диссипативные процессы сгладили анизотропию и приблизили расширение к модели Фридмана – Леметра. Судьба неоднородностей весьма любопытна: если их амплитуда была большой, то неизбежно они должны были коллапсировать в черные дыры с массой, определяемой текущим горизонтом. Их формирование могло начаться прямо с планковского времени, так что во Вселенной могло быть множество мелких черных дыр с массами до 10 –5 г. Однако С.Хокинг показал, что «мини-дыры» должны, излучая, терять свою массу, и до нашей эпохи могли сохраниться только черные дыры с массами более 10 16 г, что соответствует массе небольшой горы.
Первичный хаос мог содержать возмущения любого масштаба и амплитуды; наиболее крупные из них в виде звуковых волн могли сохраниться от эпохи ранней Вселенной до эры излучения, когда вещество было еще достаточно горячим, чтобы испускать, поглощать и рассеивать излучение. Но с окончанием этой эры остывшая плазма рекомбинировала и перестала взаимодействовать с излучением. Давление и скорость звука в газе упали, вследствие чего звуковые волны превратились в ударные волны, сжимающие газ и заставляющие его коллапсировать в галактики и их скопления. В зависимости от типа исходных волн расчеты предсказывают весьма различную картину, далеко не всегда соответствующую наблюдаемой. Для выбора между возможными вариантами космологических моделей важной является одна философская идея, известная как антропный принцип: с самого начала Вселенная должна была иметь такие свойства, которые позволили сформироваться в ней галактикам, звездам, планетам и разумной жизни на них. Иначе некому было бы заниматься космологией.
Альтернативная точка зрения состоит в том, что об исходной структуре Вселенной можно узнать не более того, что дают наблюдения. Согласно этому консервативному подходу, нельзя считать юную Вселенную хаотической, поскольку сейчас она весьма изотропна и однородна. Те отклонения от однородности, которые мы наблюдаем в виде галактик, могли вырасти под действием гравитации из небольших начальных неоднородностей плотности. Однако исследования крупномасштабного распределения галактик (в основном проведенные Дж.Пиблсом в Принстоне), кажется, не подтверждают эту идею. Другая интересная возможность состоит в том, что скопления черных дыр, родившихся в адронную эру, могли стать исходными флуктуациями для формирования галактик.
Открыта или замкнута Вселенная?
Ближайшие галактики удаляются от нас со скоростью, пропорциональной расстоянию; но более далекие не подчиняются этой зависимости: их движение указывает, что расширение Вселенной со временем замедляется. В замкнутой модели Вселенной под действием тяготения расширение в определенный момент останавливается и сменяется сжатием (рис. 2), но наблюдения показывают, что замедление галактик происходит все же не так быстро, чтобы когда-либо произошла полная остановка.
Чтобы Вселенная была замкнута, средняя плотность материи в ней должна превышать определенное критическое значение. Оценка плотности видимого и невидимого вещества весьма близка к этому значению.
Распределение галактик в пространстве весьма неоднородно. Наша Местная группа галактик, включающая Млечный Путь, Туманность Андромеды и несколько галактик поменьше, лежит на периферии огромной системы галактик, известной как Сверхскопление в Деве (Virgo), центр которого совпадает со скоплением галактик Virgo. Если средняя плотность мира велика и Вселенная замкнута, то должно было бы наблюдаться сильное отклонение от изотропного расширения, вызванное притяжением нашей и соседних галактик к центру Сверхскопления. В открытой Вселенной это отклонение незначительно. Наблюдения скорее согласуются с открытой моделью.
Большой интерес космологов вызывает содержание в космическом веществе тяжелого изотопа водорода – дейтерия, который образовался в ходе ядерных реакций в первые мгновения после Большого взрыва. Содержание дейтерия оказалось чрезвычайно чувствительно к плотности вещества в ту эпоху, а следовательно, и в нашу. Однако «дейтериевый тест» осуществить нелегко, ибо нужно исследовать первичное вещество, не побывавшее с момента космологического синтеза в недрах звезд, где дейтерий легко сгорает. Изучение предельно далеких галактик показало, что содержание дейтерия соответствует низкой плотности материи и, следовательно, открытой модели Вселенной.
Альтернативные космологические модели.
Вообще говоря, в самом начале своего существования Вселенная могла быть весьма хаотична и неоднородна; следы этого мы, возможно, наблюдаем сегодня в крупномасштабном распределении вещества. Однако период хаоса не мог длиться долго. Высокая однородность космического фонового излучения свидетельствует, что Вселенная была очень однородна в возрасте 1 млн. лет. А расчеты космологического ядерного синтеза указывают, что если бы по истечении 1 с после начала расширения существовали большие отклонения от стандартной модели, то состав Вселенной был бы совсем иным, чем в действительности. Однако о том, что было в течение первой секунды, еще можно спорить. Кроме стандартной модели Большого взрыва, в принципе существуют и альтернативные космологические модели:
1. Модель, симметричная относительно материи и антиматерии, предполагает равное присутствие этих двух видов вещества во Вселенной. Хотя очевидно, что наша Галактика практически не содержит антивещества, соседние звездные системы вполне могли бы целиком состоять из него; при этом их излучение было бы точно таким же, как у нормальных галактик. Однако в более ранние эпохи расширения, когда вещество и антивещество были в более тесном контакте, их аннигиляция должна была рождать мощное гамма-излучение. Наблюдения его не обнаруживают, что делает симметричную модель маловероятной.
3. Стационарная космологическая модель предполагает непрерывное рождение вещества. Основное положение этой теории, известное как Идеальный космологический принцип, утверждает, что Вселенная всегда была и останется такой, как сейчас. Наблюдения опровергают это.
4. Рассматриваются измененные варианты эйнштейновской теории гравитации. Например, теория К.Бранса и Р.Дикке из Принстона в общем согласуется с наблюдениями в пределах Солнечной системы. Модель Бранса – Дикке, а также более радикальная модель Ф.Хойла, в которой некоторые фундаментальные постоянные изменяются со временем, имеют почти такие же космологические параметры в нашу эпоху, как и модель Большого взрыва.