Что изучает кинетика в физике

Физическая кинетика

Если известна функция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае — матрица плотности), то можно вычислить все характеристики неравновесной системы. Вычисление полной функции распределения является практически неразрешимой задачей, но для определения многих свойств физических систем, например, потока энергии или импульса, достаточно знать функцию распределения небольшого числа частиц, а для газов малой плотности — одной частицы.

В кинетике используется существенное различие времён релаксации в неравновесных процессах; например, для газа из частиц или квазичастиц, время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния функцией распределения по всем координатам и импульсам к сокращённому описанию при помощи функции распределения одной частицы по её координатам и импульсам.

Связанные понятия

К критическим явлениям относятся многочисленные аномалии, наблюдающиеся в фазовых переходах второго рода, например, в точке Кюри в магнетике или в критической точке системы «жидкость-пар». Эти аномалии описываются критическими индексами. В системах появляются очень сильные флуктуации с бесконечным радиусом корреляции. При этом система существенно нелинейна.

Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.

Источник

Кинетика физическая

Физическая кинетика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

Если известна функция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае — матрица плотности), то можно вычислить все характеристики неравновесной системы. Вычисление полной функции распределения является практически неразрешимой задачей, но для определения многих свойств физических систем, например, потока энергии или импульса, достаточно знать функцию распределения небольшого числа частиц, а для газов малой плотности — одной частицы.

В кинетике используется существенное различие времён релаксации в неравновесных процессах; например, для газа из частиц или квазичастиц, время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния функцией распределения по всем координатам и импульсам к сокращённому описанию при помощи функции распределения одной частицы по её координатам и импульсам.

Содержание

Кинетическое уравнение

Что изучает кинетика в физике

где St — интеграл столкновений, определяющий разность числа частиц, приходящих в элемент объёма вследствие прямых столкновений и убывающих из него вследствие обратных столкновений. Для одноатомных молекул или для многоатомных, но без учёта их внутренних степеней свободы

Что изучает кинетика в физике

где ω — вероятность столкновения, связанная с дифференциальным эффективным сечением рассеяния.

Что изучает кинетика в физике

Уравнения переноса

Что изучает кинетика в физике Что изучает кинетика в физике Что изучает кинетика в физике Что изучает кинетика в физике

где Παβ — тензор плотности потока импульса, m — масса частиц, n — плотность числа частиц, Что изучает кинетика в физике— плотность потока энергии.

Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному распределению Максвелла, с температурой, плотностью и гидродинамической скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная функция распределения мало отличается от локально равновесной и решение кинетического уравнения даёт малую поправку к последней, пропорциональную градиентам температуры Что изучает кинетика в физикеи гидродинамичой скорости Что изучает кинетика в физике, так как Что изучает кинетика в физике.

С помощью неравновесной функции распределения можно найти поток энергии (в неподвижной жидкости) Что изучает кинетика в физике, где λ — коэффициент теплопроводности, и тензор плотности потока импульса

уравнение баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт уравнения Навье — Стокса, уравнение баланса энергии с учётом выражения для плотности потока тепла даёт уравнение теплопроводности, уравнение баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение. Такой гидродинамический подход справедлив, если длина свободного пробега λ значительно меньше характерных размеров областей неоднородности.

Газы и плазма

Физическая кинетика позволяет исследовать явления переноса в разреженных газах, когда отношение длины свободного пробега λ к характерным размерам задачи L (то есть число Кнудсена λ / L ) уже не очень мало́ и имеет смысл рассматривать поправки порядка 1 / L (слабо разреженные газы). В этом случае кинетика объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, так как для описания неравновесного состояния уже недостаточно одночастичной функции распределения, а нужно учитывать функции распределения более высокого порядка. Частичные функции распределения удовлетворяют цепочке зацепляющихся уравнений (так называемых уравнений Боголюбова или цепочке ББГКИ, то есть уравнений Боголюбова — Борна — Грина — Кирквуда — Ивона). С помощью этих уравнений можно уточнить кинетическое уравнение для газов средней плотности и исследовать для них явления переноса.

Что изучает кинетика в физике

Что изучает кинетика в физике

Таким образом, кинетические уравнения и уравнения Максвелла образуют связанную систему уравнений Власова — Максвелла, определяющую все неравновесные явления в плазме. Такой подход называется приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле. При учёте столкновений электронов возникает кинетическое уравнение, в котором эффективное сечение столкновений очень медленно убывает с ростом прицельного расстояния, а также становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмическая расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Конденсированные среды

Физическая кинетика металлов основана на решении кинетического уравнения для электронов, взаимодействующих с колебаниями кристаллической решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрическое сопротивление возникает в результате этих столкновений. физическая кинетика объясняет термоэлектрические, гальваномагнически и термомагнинтные явления, скин-эффект, циклотронный резонанс в высокочастотных полях и другие кинетические эффекты в металлах. Для сверхпроводников она объясняет особенности их высокочастотного поведения.

Физическая кинетика магнитных явлений основана на решении кинетического уравнения для магнонов. Она позволяет вычислить динамическии восприимчивости магнитных систем в переменных полях, изучить кинетику процессов намагничивания.

Фазовые переходы

Физическая кинетика фазовых переходов первого рода, то есть со скачком энтропии, связана с образованием и ростом зародышей новой фазы. Функция распределения зародышей по их размерам (если зародыши считать макроскопическими образованиями, а процесс роста — медленным) удовлетворяет уравнению Фоккера — Планка:

Что изучает кинетика в физике

Что изучает кинетика в физике

Явления переноса в жидкостях

Теорию явлений переноса в жидкостях также можно отнести к физической кинетике, хотя для жидкостей метод кинетических уравнений непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистическое равновесие. Поэтому в качестве исходного приближения при решении уравнения Лиувилля можно принять локально равновесное распределение Гиббса с температурой Что изучает кинетика в физике, химическим потенциалом Что изучает кинетика в физикеи гидродинамической скоростью Что изучает кинетика в физике, соответствующими рассматриваемой точке жидкости. Например, для однокомпонентпой жидкости локально равновесная функция распределения (или матрица плотноси) имеет вид

Что изучает кинетика в физике

Приближённое решение уравнения Лиувилля для состояний, близких к статистически равновесному, позволяет вывести уравнения теплопроводности и Навье — Стокса для жидкости и получить микроскопические выражения для кинетических коэффициентов теплопроводности и вязкости через пространственно-временные корреляционные функции плотностей потоков энергии и импульсов всех частиц системы. Этот же подход возможен и для смеси жидкостей. Подобное решение уравнения Лиувилля есть его частное решение, зависящее от времени лишь через параметры Что изучает кинетика в физике, Что изучает кинетика в физике, Что изучает кинетика в физике, соответствующие сокращённому гидродипамическому описанию неравновесного состояния системы, которое справедливо, когда все гидродинамические параметры мало меняются на расстояниях порядка длины свободного пробега (для газов) или длины корреляций потоков энергии или импульса (для жидкостей).

К задачам физической кинетики относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физической системы на включение внешнего ноля. Её можно выразить через функции Грина с усреднением по состоянию, которое может быть и неравновесным.

В физической кинетике исследуют также кинетические свойства квантовых систем, что требует применения метода матрицы плотности.

Источник

КИНЕТИКА ФИЗИЧЕСКАЯ

микроскопич. теория процессов в неравновесных средах. В К. ф. методами квантовой или классич. статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в разл. физ. системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внеш. полей.

В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, К. ф. исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрич. и магн. проницаемости и др. характеристики сплошных сред.

К. ф. включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистич. теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магн. процессов и теорию кинетич. явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

В К. ф. используется существ. различие времён релаксации в неравновесных процессах (иерархия времён релаксации), напр. для газа из частиц или квазичастиц время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния ф-цией распределения по всем координатам и импульсам к сокращённому описанию при помощи ф-ции распределения одной частицы по её координатам и импульсам.

Что изучает кинетика в физике

Что изучает кинетика в физике

где Что изучает кинетика в физике— вероятность столкновения, связанная с диф-ференц. эфф. сечением рассеяния da:

Что изучает кинетика в физике

Уравнения переноса. К. ф. позволяет получить ур-ния баланса ср. плотностей вещества, импульса и энергии. Напр., для простого газа плотность Что изучает кинетика в физике, гидро-динамич. скорость V и ср. энергия Что изучает кинетика в физикеудовлетворяют ур-ниям баланса:

Что изучает кинетика в физике

Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному Максвелла распределению,

Что изучает кинетика в физике

с темп-рой, плотностью и гидродинамич. скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная ф-ция распределения мало отличается от локально равновесной и решение кинетич.

ур-ния даёт малую поправку к последней, пропорциональную градиентам темп-ры Что изучает кинетика в физикеи гидродинамич. скорости Что изучает кинетика в физике, т. к. Что изучает кинетика в физике.С помощью неравновесной ф-ции распределения можно найти поток энергии (в неподвижной жидкости) Что изучает кинетика в физике, где Что изучает кинетика в физике— коэф. теплопроводности, и тензор плотности потока импульса

Что изучает кинетика в физике

Что изучает кинетика в физике

тензор вязких напряжении, Что изучает кинетика в физике— коэф. сдвиговой вязкости, Р- давление. Для газов с внутр. степенями свободы Что изучает кинетика в физикесодержит также член Что изучает кинетика в физике, где Что изучает кинетика в физике— коэф. «второй», объёмной вязкости, проявляющейся лишь при движениях, в к-рых Что изучает кинетика в физике. Для кинетич. коэффициентов Что изучает кинетика в физикеполучаются выражения через эфф. сечения столкновений и, следовательно, через константы молекулярных взаимодействий. В бинарной смеси поток вещества состоит из диффуз. потока, пропорционального градиенту концентрации вещества в смеси с коэф. диффузии, и термодиффузионного потока, пропорционального градиенту темп-ры с коэф. термодиффузии, а поток тепла, кроме обычного члена теплопроводности, пропорционального градиенту темп-ры, содержит дополнит. член, пропорциональный градиенту концентрации и описывающий Дюфура эффект. К. ф. даёт выражения для этих кинетич. коэффициентов через эфф. сечения столкновений. Кинетич. коэффициенты для перекрёстных явлений, напр. термодиффузии и эффекта Дюфура, оказываются равными (Онсагера теорема). Эти соотношения являются следствием микро-скопич. обратимости ур-ний движения частиц системы, т. е. инвариантности их относительно обращения времени.

Ур-ние баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт Навье-Стокса уравнения, ур-ние баланса энергии с учётом выражения для плотности потока тепла даёт теплопроводности ур-ние, ур-ние баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение. Такой гидродинамич. подход справедлив, если длина свободного пробега l значительно меньше характерных размеров областей неоднородности.

Газы и плазма. К. ф. позволяет исследовать явления переноса в разреж. газах, когда отношение длины свободного пробега l к характерным размерам задачи L (т. е. Кнудсена число l/L )уже не очень мало и имеет смысл рассматривать поправки порядка l/L (слабо разреж. газы). В этом случае К. ф. объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, т. к. для описания неравновесного состояния уже недостаточно одночастичной ф-ции распределения, а нужно учитывать ф-ции рас-

пределения более высокого порядка Частичные ф-ции распределения удовлетворяют цепочке зацепляющихся ур-ний ( Боголюбова уравнений, наз. также цепочкой ББГКИ, т. е. ур-ний Боголюбова-Борна-Грина- Кирквуда-Ивона). С помощью этих ур-ний можно уточнить кинетич. ур-ние для газов ср. плотности и исследовать для них явления переноса.

К. ф. двухкомпонентной плазмы описыпается двумя ф-циями распределения (для электронов Что изучает кинетика в физике, для ионов f i ) удовлетворяющими системе двух кинетич. ур-ний. На частицы плазмы действуют силы

Что изучает кинетика в физике

Что изучает кинетика в физике

Т. о., кинетич. ур-ния и yp-ния Максвелла образуют связанную систему ур-ний, определяющих все неравновесные явления в плазме. Такой подход наз. приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле (см. Кинетические уравнения для плазмы). При учёте столкновений электронов возникает кинетич.. ур-ние, в к-ром эфф. сечение столкновений очень медленно убывает с ростом прицельного расстояния, становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмич. расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Конденсированные среды. К. ф. неравновесных процессов в диэлектриках основана на решении кинетич. ур-ния Больцмана для фононов решётки (ур-ние Пайерлса). Взаимодействие между фононами вызвано членами гамильтониана решётки, ангармоническими относительно смещения атомов на положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких темп-рах, когда длина свободного пробега больше размеров образца L, роль длины свободного пробега играет L. Кинетич. ур-ние для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фопонов в кристалле при низких темп-pax подобна обычному газу. Нормальные столкновения устанавливают внутр. равновесие в каждом элементе объёма газа, к-рый может двигаться со скоростью V, мало меняющейся на длине свободного пробега для нормальных столкновении. Поэтому можно построить ур-ния гидродинамики фононного газа в диэлектрике. К. ф. м е т а л л о в основана на решении кинетич. ур-ния для электронов, взаимодействующих с колебаниями кристаллич. решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрич. сопротивление возникает в результате этих столкновений. К. ф. объясняет термоэле-ктрич., гальваномагн, и термомагн. явления, скин-эффект, циклотронный резонанс в ВЧ-полях и др. кинетич. эффекты в металлах. Для сверхпроводников она объясняет особенности их ВЧ-поведения.

Явления переноса в жидкостях. Теорию явлений переноса в жидкостях также можно отнести к К. ф., хотя для жидкостей метод кинетич. ур-ний непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистич. равновесие. Поэтому в качестве исходного приближения при решении Лиувилля уравнения можно принять локально равновесное Гиббса распределение с темп-рой Т (x, t), хим. потенциалом Что изучает кинетика в физикеи гидродинамич. скоростью F(x, t), соответствующими рассматриваемой точке жидкости. Напр., для однокомпонентной жидкости локально равновесная ф-ция распределения (или статистич. оператор) имеет вид

Что изучает кинетика в физике

Что изучает кинетика в физике

Что изучает кинетика в физике

К задачам К. ф. относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физ. системы на включение внеш. поля. Её можно выразить через Грина функции с усреднением по состоянию, к-рое может быть и неравновесным.

В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное).

Лит.: Гуревич Л. Э., Основы физической кинетики, Л.- М., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.- Л., 1946; Ч е п-мен С., К а у л и н г Т.’, Математическая теория неоднородных газов, пер. с англ., М., 1960; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; К л и-монтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; Ферцигер Д ж., К а-п е р Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976; В а л е с к у Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979. Д. Н. Зубарев.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *