Что изучает бионика в биологии

Что изучает бионика в биологии

ВВЕДЕНИЕ

БИОНИКА – направление в биологии и кибернетике; изучает особенности строения и жизнедеятельности организмов с целью создания новых приборов, механизмов, систем и совершенствования существующих.

Человек часто учится от природы, создавая инструменты и приборы, которыми природа пользуется на протяжении многих лет, оттачивая свое мастерство в процессе эволюции. Мы часто пользуемся такими инструментами как клещи, молотки, расчески, щетки и многое другое и не задумываемся, как они появились. Первоначально этим создателем была природа. Это она имеет множество инструментов, только они сделаны еще лучше, качественней и являются наиболее точными, чем инструменты техники. Они изготовлены не из металла, а например, из хитина, как у насекомых. Изучая науку – Бионику – возникали вопросы. А многие ли знают про эту науку? А какими приборами и инструментами созданными природой, мы пользуемся дома? Может ли человек обойтись без этих инструментов?

Гипотеза:Мы предположили, что человек часто использует в своей повседневной жизни инструменты, созданные природой, и не может без них обойтись.

Цель работы: Изучение инструментов находящихся в квартире средней статистической семьи.

Задачи исследования:

Объект исследования:инструменты используемые человеком.

Предмет исследования: знания о природе, используемые человеком, при создании инструментов.

Методы исследования: социологический опрос, исследованиеинструментов используемых человеком, создание брошюры.

У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла.

БИОНИКА – наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организма

С развитием авиации совершенствовались и летательные аппараты. Однако, длительное время страшным бичом скоростной авиации был флаттер – внезапно возникающие на определённой скорости вибрации крыльев, которые приводили к тому, что самолёты самых прочных конструкций разваливались в воздухе за несколько секунд. После многочисленных аварий конструкторы научились бороться с этим бедствием: крылья стали делать с утолщением на конце. И уже потом нашли точно такие же хитиновые утолщения на концах крыльев бабочек.

Наблюдая за ракообразными и за тем, как они хватают клешнями, учёные придумали удобные медицинские зажимы, которыми пользуются и сейчас.

Моделирование органа медузы, улавливающего инфразвуки, позволило создать техническое устройство, предупреждающее за много часов о наступления шторма и указывающее направление, откуда он придёт.

Обтекаемая форма акулы и её внешнее строение стало прототипом современных подводных лодок. Кальмар, забирая в себя воду, с силой её выталкивает. Это помогает ему двигаться с большой скоростью. Данный принцип человек применил для создания реактивного двигателя [ 2 ].

Летучая мышь во время полёта ориентируется по отражению непрерывно создаваемых ею звуковых волн. Локационный аппарат мышей обладает большей точностью, чем созданные человеком радио- и гидролокаторы.

Густав Эйфель в 1889 году построил чертёж Эйфелевой башни. Это сооружение считается одним из самых ранних очевидных примеров использования бионики в инженерии. Херман фон Мейер исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1Проведение социологического опроса

Для проведения школьного социологического опроса были составлены 8 вопросов с выбором ответа (Приложение 1.).

Опрос проводился среди обучающихся с 5-го по 9-й класс. Всего 126 респондента. Результаты опроса таблица №1 (Приложение 2.)

Первый вопрос раскрывал представление о самой науке – бионике. По формулировке вопроса почти все обучающиеся сориентировались верно, ответив на него – 95.5%. Хотя многие утверждали, что не представляют, что изучает данная наука. Мы раскрыли понятие – БИОНИКА, а затем продолжили отвечать на вопросы. Хуже всех справились пятиклассники – 63.8%, а лучше всех ответили 9 –е классы – 93%. Это говорит, о большом багаже знаний полученных за 9 лет обучения в школе. Но по ответам (приложение 2. таблица №2) можно проследить и увидеть, что для всех самый легкий вопрос был №5, почти все ответили правильно. И так же самым затруднительным вопросом оказался №8. Только 9 – ки многие смогли на него правильно ответить, так как изучили анатомию человека в полном объеме.

2.2 Изучение инструментов используемых человеком.

2.2.1 Инструмент: Комбинированные клещи(Приложение 3. табл. №1)

Природный объект: Клещи муравьиного льва – муравьиный лев питается личинками насекомых. Он разрывает воронки в песке, если в эту ловушку попадает муравей, то муравьиный лев бросает ему вслед песок, тем самым мешает выбраться обратно. При этом он использует свои клещи в качестве совка для песка. Когда он высасывает содержимое своей жертвы, он выбрасывает пустую оболочку из воронки. Клещи муравьиного льва могут сыпать песок, хватать добычу и впиваться в нее; они действуют как шприц, маленький всасывающий насос или инструмент для броска. Таким образом, они представляют вид комбинированных клещей, обладающий шестью функциями.[ 1 ]

Использование инструмента: Чаще всего при работе используют клещи, способные выполнять четыре функции. Их захватывающие концы имеют рифленые контактные поверхности и поэтому, например, могут удерживать лист жести. В выемке этих клещей имеются зубчики, которые позволяют вращать трубку. С боков изгибы инструмента пересекаются, и это делает возможным перекусывание проволоки. Так же ими можно забивать гвозди.

Вывод:Комбинированные клещи удобны в применении, так как заменяют несколько инструментов.

2.2.2 Инструмент: Пинцет(Приложение 3. табл. №2)

Природный объект: Веретенники – крупный кулик из семейства бекасовых с очень длинным клювом и длинными ногами. Своим длинным 15-сантиметровым клювом они ощупывают землю, втыкая его в мягкую почву. При этом кончик клюва птица в нужный момент открывает и закрывает. Таким образом, ей легко хватать маленьких червяков и другую добычу.

Клюв – это комбинированный инструмент. До захвата пищи клюв сжат и служит в качестве ковыряющего и ищущего инструмента. Только глубоко в земле он открывается, словно две створки пинцета, выполняя в этом случае функцию точно работающего хватающего механизма.[ 1 ]

Использование инструмента: Острые концы пинцета легко проникают под верхний слой предметов. Сжав пальцами обе половинки пинцета, можно захватить даже самые мелкие предметы. Если отпустить их, пинцет разожмется и выпустит предмет.

Вывод: Пинцет необходим для работы с мелкими предметами, так как пальцы человека не могут производить точные манипуляции с такими предметами.

2.2.3 Инструмент: Складной нож(Приложение 2. табл. №3)

Природный объект: Навозный жук живет в мягкой земле и навозе. Для своего продвижения он использует специальные лопатки, которые находятся на его голени. Когда они не нужны жуку, он может, поместить свою ножку в желобке голени и затем голень вложить в нишу бедра. Таким образом, его инструменты размещаются, экономя место.[ 1 ]

2.2.4Инструмент:Дрели(Приложение 3. табл. №4)

Природный объект:Оса рогохвоста хвойного. Яйцеклад осы рогохвоста хвойного большого, когда готовиться отложить яйца, она ползет по ветке до самого ствола дерева,

поворачивает к нему заднюю часть своего туловища, выпускает из него яйцеклад и удобно устанавливает его. Насекомое «просверливает» в дереве мельчайшие дырочки примерно на глубину двух сантиметров. Если дерево хвойное, ему потребуется около 20 минут. Когда дырка готова, оса через свой длинный полый яйцеклад, подобный сверлу, помещает туда яйца.[ 1 ]

Вывод:Дрель необходима и очень удобна для просверливания отверстий в различных строительных материалах ( дерево, бетон, металл).

2.2.5Инструмент:Застежка липучка(Приложение 3. табл. №5)

Природный объект:Репейник. Плоды репейника показывают, как необходимы, бывают крючки. У плодов репейника существует множество способов распространения семян самими растениями. Его плоды, которые имеют более 200 крючков, прикрепляются к шерсти животных. Животные уносят их с собой и затем стряхивают.[ 1 ]

Вывод:Липучка очень удобна. Экономит время для застегивания обуви и одежды т.д. Даже малыш может надеть обувь без помощи взрослого.

2.2.6Инструмент:Технические присоски(Приложение 3. табл. №6)

Природный объект:Осьминог изобрел изощренный метод охоты на свою жертву: он охватывает ее щупальцами и присасывается сотнями присосок, целые ряды которых находятся на щупальцах. Также они помогают ему передвигаться по скользким поверхностям, не съезжая вниз.[ 1 ]

Использование инструмента:Там, где есть гладкие поверхности, часто используют присоски. В быту их используют, прежде всего, на кухне и в ванной. Когда крючок с присоской прижимают к кафельной плитке ванной комнаты, создается вакуумное пространство.

2.2.7Инструмент:Батарейка(Приложение 3. табл. №7)

Природный объект:Электрический угорь может испускать электрические разряды до 700 вольт, с помощью которых он может оглушать или убивать врагов и свою добычу. Электрический орган, который генерирует напряжение, состоит из особой мускулатуры. Напряжение, как и в батарее, создается потоком ионов и разряжается серией ударов, быстро следующих одним за другим.[ 1 ]

Использование инструмента В каждом доме есть огромное количество приборов, которые работают на батарейках (часы, карманный фонарик).

Вывод:Батарейка незаменима для многих электрических бытовых приборов, даже если отключили электричество – нас спасет батарейка!

2.2.8 Инструмент: Игла для инъекций(Приложение 3. табл. №8)

Природный объект: Оса. Осиное жало. Длина жала осы не превышает 3 мм, а толщины 0,001 мм. Если осе угрожает опасность, она применяет его для защиты. Жало с легкостью впитывается в кожу человека, превращаясь в крошечный кинжал. Одновременно оно является инъекционным шприцом.[ 1 ]

Использование инструмента:Внутривенные и внутримышечные инъекции.

Вывод:У многих в домашней аптечке хранятся инъекционные шприцы для экстренной помощи.

ЗАКЛЮЧЕНИЕ

В ходе работы были опрошены обучающиеся на представление о науке –Бионике. Как выяснилось, многие не знают эту науку, но по подсказке в выборе ответа, могут представить, чем она занимается.

Так же были исследованы инструменты, которые находятся в квартире и используются по назначению. Эти инструменты и приспособления создал человек, используя знания о природе.

Так в основе изобретения комбинированных клещей лежит принцип работы клещей муравьиного льва. Этот инструмент многофункциональный, и удобен при ремонте квартиры. Пинцет повторяет клюв веретенника, очень удобен при работе с мелкими предметами. Складной нож имитирует ножку с лопатками навозного жука – компактен и многофункционален. Он не заменим в походе, поездке и в хранении и переносе, соблюдается техника безопасности. Дрель,подобно яйцекладуосы рогохвоста хвойного, необходима и очень удобна для просверливания отверстий в различных строительных материалах ( дерево, бетон, металл) при строительстве и ремонте. Застежки липучки такие же липкие как плоды репейника. Очень удобны для застегивания сумок, обуви и одежды. А особенно они экономят время мам маленьких детей, ведь малышу легче справиться с липучкой на обуви, чем со шнурками. В красивом кафеле всегда жаль делать отверстие сверлом, выход из положения технические присоски. Они незаменимы в ванной, так как прочно прикрепляют крючки, мыльницы, полочки без клея и гвоздей, как присоски осьминога. Невозможно представить любую квартиру, дом без батареек, их используют в часах, телефонах, фонариках, да мало ли где! А принцип работы батарейки повторяет электрический орган электрического угря. У многих в домашней аптечке хранятся инъекционные шприцы для экстренной помощи. Не техника, а природа создает самые эффективные и тончайшие инъекционные шприцы, как жало осы. К сожалению, техника не создала еще игл, подобных жалу, которые не гнутся и не ломаются. Если бы удалось создать такие инъекционные шприцы, то прививки, например, стали бы почти безболезненными.

Изучив, как человек применяет свои знания о природе, создавая инструменты. И исследуя инструменты в квартире, как их использует человек. Мы подтвердили свою гипотезу, действительно, человек часто использует в своей повседневной жизни инструменты, созданные природой, и не может без них обойтись.

По итогам работы была создана брошюра, которую можно использовать на уроках окружающего мира. И дать представление обучающимся о науке – БИОНИКЕ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Вопросы социологического опроса:

а) конструирование; б) планирование; в) бионика +

а) физику; б) кораблестроение; в) механизм полета птиц и условия, позволяющие им свободно парить в воздухе +

а) насекомые +; б) рептилии; в) листья деревьев

а) модели приборов-локаторов для слепых +;

б) радары; в) другая техника

а) рыбы +; б) мыши; в) кроты

а) создание медикаментов; б) строительство медицинских учреждений;

в) создание искусственных органов, способных функционировать в симбиозе с организмом человека +

а) стеблей злаков +; б) травы; в) кустов

а) принцип строения стебля растений;

б) принцип строения человеческих костей +;

в) принцип строения скелета насекомых

Результаты социологического опроса

Вопрос

Ответ

1. Как называется наука, цель которой – использовать биологические знания для решения инженерных задач и развития техники?

в) бионика +

2. Что изучал основоположник аэродинамики Н.Е. Жуковский? На основании его исследований и появилась авиация.

в) механизм полета птиц и условия, позволяющие им свободно парить в воздухе +

3. Более совершенным летательным аппаратом в природе обладают…

а) насекомые +;

4. По аналогии с принципом, лежащим в основе с эхолокации у летучих мышей, конструируются…

а) модели приборов-локаторов для слепых +;

5. Какие животные обладают электрической активностью?

а) рыбы +;

6. Применение бионики в медицине это…

а) создание медикаментов;

б) строительство медицинских учреждений;

в) создание искусственных органов, способных функционировать в симбиозе с организмом человека +

7. Какое строение копируют современные многоэтажные дома, в которых проживают люди?

а) стеблей злаков +;

8. Какой принцип стоит в основе строения Эйфелевой башни?

а) принцип строения стебля растений;

б) принцип строения человеческих костей +;

в) принцип строения скелета насекомых

Сравнительная таблица результатов социологического опроса

Источник

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

Что изучает бионика в биологии

БИОНИКА. КАК ПРИКЛАДНАЯ НАУКА О СОЕДИНЕНИИ БИОЛОГИИ И ТЕХНИКИ

Моя работы посвящена изучению такой отрасли науки как, бионика. Бионика- наука, которая основывается на идеях природы и реализации этих идей в реальную жизнь с помощью усовершенствованной техники. Многие люди до сих пор не знают, что же представляет из себя данная отрасль кибернетики. В своей работы я расскажу вам, о этой науке, о том, что с ней связанно и почему она пользуется не малой популярностью среди жителей всего мира.

Раскрыть понятие бионики.

Рассказать о видах бионики и охарактеризовать каждую из них.

Рассказать, как работают бионические протезы.

Охарактеризовать такую отрасль бионики, как “Архитектурная бионика” или же “Экостиль”

Откуда всё начиналось?

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов. В своё время такие идеи были слишком дерзкими, чтобы стать востребованными. Они заставили обратить на себя значительно позже. Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне.

Бионика-(от др.-греч. βίον — живущее) — прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Три года назад корпорация MercedesBenz разработала бионическое транспортное средство, скопированное с тропической рыбы-кузовка.

Виды бионики различают:

    Биологическую бионику, изучающую процессы, происходящие в биологических системах;

    Теоретическую бионику, которая строит математические модели этих процессов;

    Техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

    Основные направления работ по бионике охватывают следующие проблемы:

    1. Изучение нервной системы человека и животных и моделирование нервных клеток (нейронов) и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика);

    2. Исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения;

    3. Изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике;исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.

    Таким образом спроектировали поезда, за основу взявши строение обыкновенного дождевого червя

    Поговорим о важном.

    Создание модели в бионике — это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчёта. И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа — бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

    Осьминог изобрел изощренный метод охоты на свою жертву: он охватывает ее щупальцами и присасывается сотнями присосок, целые ряды которых находятся на щупальцах. Присоски помогают ему также двигаться по скользким поверхностям, не съезжая вниз. На щупальце осьминога хорошо видны присоски, расположенные плотными рядами. Коврик с присоскамизаимствование у природы. Так же присоски послужили удобным средством в сфере медицины и в быту человека.

    Другое знаменитое заимствование сделал швейцарский инженер Джордж де Местраль (GeorgesdeMestral) в 1955 году. Когда он гулял с собакой, то начал замечать, что к шерсти его питомца начали прилипать странные растения. Позже он выяснил, причину покоторым прилипает этот сорняк, и оказалось, что они держались за счёт маленьких крючков на самом растении. В результате инженер осознал важность сделанного открытия и через восемь лет запатентовал удобную «липучку» Velcro, которая сегодня широко используется при изготовлении не только военной, но и гражданской одежды.

    Как появились «умные» бионические протезы?

    Когда человек теряет конечность, то самая главная его мечта – снова ощутить руку или ногу. И не просто ощутить, а выполнять конечностью все движения, доступные до травмы или болезни: взять чашку, зашнуровать ботинки, идти с опорой на обе ноги. Вернуть утраченные возможности позволяет бионический протез, или сложное устройство, улавливающее нервные импульсы. Мало кто знает, что прообраз современных протезов относится еще к 19-му веку, когда в деревянную ногу вставляли металлический шар, чтобы сделать нижнюю часть подвижной.

    Как работает простейший бионический протез?

    После травмы или в ходе болезни конечность ампутируют. Оставшаяся культя состоит из множества тканей: кожи, мышц, костей, сосудов и нервов. Хирург во время операции выводит сохранившийся двигательный нерв на остающуюся крупную мышцу. После заживления операционной раны нерв может передавать двигательный сигнал. Этот сигнал воспринимает датчик, установленный на протезе. В процессе восприятия нервного импульса участвует сложная компьютерная программа.

    Поэтому бионический протез может выполнять только те действия, которые в этой программе прописаны: взять ложку, вилку или шарик, нажать клавишу и тому подобное. По сравнению с отсутствием конечности возможность даже ограниченного числа движения – огромный прогресс. Однако даже самые лучшие и совершенные бионические протезы пока не могут выполнить всех тех мелких и точных движений, на которые способна живая конечность.

    Искусственные человеческие «запчасти»

    С тех пор как был представлен первый бионический протез, наука ушла далеко вперед. Если первые модели были громоздкими, требовали переключателей и могли выполнять только самые простые движения, то современные образцы трудно назвать протезами. Это элегантные инженерные изделия, словно сошедшие с экрана футуристических фильмов.

    Протез абсолютно похож на здоровую руку, им можно писать, держать столовые приборы, руль автомобиля или куриное яйцо. Для совершенства движений иногда используются собственные ткани человека с других участков тела – с ног,например.

    Кто первый – природа или люди?

    Иногда случается, что то или иное изобретение человечества уже давно «запатентовано» природой. То есть изобретатели, создавая нечто, не копируют, а придумывают сами технологию или принцип работы, а позже оказывается, что в естественной природе это уже давно существует, и можно было просто подсмотреть и перенять. Несмотря на колоссальное сходство структуры, учёные самостоятельно изобрели именно такой метод постройки фабричных труб, а уже позже увидели тождество такого строения с природными элементами.

    Бионика в архитектуре.

    Архитектурно-строительная бионика – особая отрасль бионической науки, задачей которой становится органическое воссоединение архитектуры и природы. В последнее время всё чаще при проектировании современных конструкций обращаются к бионическим принципам, позаимствованным у живых организмов. Сегодня архитектурная бионика стала отдельным архитектурным стилем. Рождалась она с простого копирования форм, а сейчас задачей этой науки стало перенять принципы, организационные особенности и технически их воплотить.

    Иногда такой архитектурный стиль называют экостилем. Всё потому, что основные правила бионики – это: поиск оптимальных решений; принцип экономии материалов; принцип максимальной экологичности; принцип экономии энергии. Как видите, бионика в архитектуре – это не только впечатляющие формы, но и прогрессивные технологии, позволяющие создавать сооружение, отвечающие современным требованиям.

    Один из ярких примеров архитектурной бионики:“ Ласточкино гнездо” в Тайване

    Характеристики архитектурных бионических строений.

    Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы. В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями. Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

    В последнее десятилетие бионика получила значительный импульс к новому развитию. Это связано с тем, что современные технологии переходят на гига- и наноуровень и позволяют копировать миниатюрные природные конструкции с небывалой ранее точностью. Современная бионика в основном связана с разработкой новых материалов, копирующих природные аналоги, робототехникой и искусственными органами.

    Природа открывает перед инженерами и учеными бесконечные возможности по заимствованию технологий и идей. Раньше люди были не способны увидеть то, что находится у них буквально перед носом, но современные технические средства и компьютерное моделирование помогает хоть немного разобраться в том, как устроен окружающий мир, и попытаться скопировать из него некоторые детали для собственных нужд.

    Список используемой литературы:

    Бионика в школе.Ц.Н.Феодосиевич, Г.И. Иванович, Киев, 1990.

    Живие приборы.Ю.Г.Симвков, М., 1986.

    Тайны бионики. И.И.Гармаш, Киев, 1985.

    Моделирование в биологии, пер. с англ., под ред. Н. А. Бернштейна, М., 1963.

    Вопросы бионики. Сб. ст., отв. ред. М. Г. Гаазе-Рапопорт, М., 1967.

    Источник

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *