Что измеряет твердомер роквелла
Твердомеры для металлов. Метод Роквелла и Бринелля
Под твёрдостью металлов понимают их способность пластически деформироваться при нагрузках, которые прикладываются к детали в результате внедрения в неё элемента с более высокой твёрдостью – индентора. Испытания на твёрдость считаются одними из наиболее распространённых, поскольку определяют как меру прочности изделия, так и его способность сопротивляться переменным во времени нагрузкам. При этом, в отличие от других методов контроля, испытания на твёрдость относятся к числу неразрушающих, а твердомеры для металлов могут быть достаточно компактными.
Сущность методов определения твёрдости металлов
Испытания могут проводиться как на эталонных образцах (изготовленных из того же металла, и подвергнутых такому же режиму термической обработки), так и непосредственно на готовых деталях. В последнем случае необходимо принять меры к тому, чтобы испытуемое изделие не имело затем внешних повреждений.
Выбор метода испытания твёрдости зависит от:
Твёрдость может быть измерена тремя группами методов – механическими (статическими и динамическими), а также ультразвуковыми. Кроме того, различают твёрдость при комнатных и повышенных температурах (так называемую «горячую твёрдость»). Независимо от этого, физическая сущность всех методов одна – в образец внедряется деформирующий элемент, перемещение которого считывается по специальной шкале.
Твёрдость рассматривается как сопротивление металла необратимым пластическим деформациям, а потому отличается от других измерений наличием специальных унифицированных приборов – твердомеров для металлов.
Твердомеры Бринелля
Способ определения твёрдости по методу Бринелля заключается в том, что в поверхность детали вдавливается шарик или из закалённой стали, или из твёрдого сплава. В результате на металле остаётся отпечаток в виде полусферы определённого диаметра и глубины, что определяет меру твёрдости по Бринеллю НВ.
К методу предъявляются следующие требования:
Метод Бринелля непригоден, если измеренная твёрдость превышает 450 НВ: в таком случае происходит деформация контактной поверхности самого индентора.
Твердомеры для металлов, реализующие метод Бринелля, подразделяют на приборы типа ТШ и типа БТБ.
Стационарные твердомеры для металлов типа ТШ, с механическим приводом от электродвигателя, состоят из следующих узлов:
Твердомер Бринелля работает так. Деталь испытуемой поверхностью вверх устанавливают на стол, после чего поднимают его до упора, имеющегося в корпусе индентора. Далее включается электродвигатель, который перемещает корпус индентора. Тот, преодолевая сопротивление пружин, приводит в движение шарик, который вдавливается в металл. Конечный результат считывается по шкале. Отношение плеч рычажного механизма, а также суммарный вес грузов на противовесе устанавливается в зависимости от предполагаемого результата измерений (см. таблицу выше).
Твердомеры для металлов типа БТБ имеют некоторые эксплуатационные преимущества перед приборами ТШ: они обладают увеличенными размерами рабочего пространства стола, смена режимов нагружения производится механически, а для отсчёта результата используется более точная оптическая система. Работы на твердомерах БТБ производят в той же последовательности, что и на приборах ТШ, но образец после испытания сканируется измерительной головкой, с отображением результата на экране.
Данный способ подходит также для определения твёрдости изделий, которые эксплуатируются при повышенных температурах. Для этого на стол устанавливается ванна с нагревающей образец жидкостью, причём для температур до 300 ° С используют масло, а для более высоких температур – солевой расплав. Образец помещают в ванну на асбестовую плиту, после чего измеряют твёрдость обычным методом.
Доступными и простыми в эксплуатации являются переносные твердомеры для металлов типа ТШП. Испытательная головка прибора устанавливается на деталь в месте измерения и крепится струбциной или специальными захватами. Нагрузка создаётся вручную, и контролируется по шкале индикатора. Для измерения результата применяют переносной микроскоп типа МПБ. Замеренный отпечаток сравнивается со значениями, которые приводятся в таблицах пересчёта.
Твердомеры для металлов, работающие по методу Бринелля, имеют ряд ограничений своего применения:
Твердомеры Роквелла
Метод определения твёрдости металлов по Роквеллу состоит во вдавливании алмазного конуса или стального закалённого шарика в предварительно зашлифованную поверхность образца. В отличие от предыдущего способа твёрдость по Роквеллу заключается в определении глубины вдавливания. Метод Роквелла считается более оперативным, а в таких твердомерах автоматизируется как процесс испытания, так и последующая обработка его результатов.
Суть метода Роквелла заключается в том, что предварительно выбирается некоторая реперная точка, и полученная для этой координаты глубина внедрения индентора вычитается из произвольно выбранной наибольшей глубины вдавливания.
Метод Роквелла имеет несколько разновидностей, каждая из которых применяется в определённых условиях испытаний (см. таблицу):
Вариант метода | А | В | С | F | N | T |
Форма индентора | Конус | Шарик | Конус | Шарик | Конус | Шарик |
Материал индентора | Алмаз | Сталь | Алмаз | Сталь | Алмаз | Сталь |
Условное обозначе-ние твёрдости | HRA | HRB | HRC | HRF | HRN | HRT |
Диапазон замера твёрдости | 60…80 | 35…100 | 30…70 | 60…100 | 17…92 | 5…94 |
Стали весьма высокой твёрдости | Стали средней твёрдости, цветные сплавы | Стали повышенной твёрдости | Тонколистовые металлы | Для испытания тонких или малогабаритных изделий |
Стационарные твердомеры для металлов, реализующие метод Роквелла (типа ТК), подразделяют на приборы с электрическим и механическим приводом. Ручной твердомер ТК включает в себя:
Последовательность действия твердомера Роквелла следующая. Образец шлифованной поверхностью вверх размещают на измерительном столе, после чего перемещают его вверх, до начала вдавливания индентора в поверхность, что отслеживается по шкале твердомера. Так происходит предварительное нагружение, признаком окончания которого является вертикальное расположение большой стрелки. Это означает, что индентор внедрился в поверхность на глубину, при которой упругая деформация металла уже перешла в пластическую. Далее, освобождают рукоятку, которая амортизатором возвращается до упора, и нагружают испытуемое изделие основным усилием. В конечном положении нагрузка на деталь должна быть не менее 5…10 с., когда на индикаторе появится искомое значение твёрдости по Роквеллу. После этого маховичком возвращают столик в исходное положение, и снимают с него деталь.
Условная единица твёрдости Роквелла соответствует 2 мкм перемещения рабочего наконечника индентора.
Существуют и переносные разновидности приборов Роквелла. К числу наиболее популярных относится прибор типа ТКП, испытательная головка которого прикрепляется к измеряемой детали. Нагрузку от рукоятки производит трёхкулачковый валик, передающий усилие шпинделю, в котором размещается индентор. Последовательность приложения нагрузок – предварительной и основной – в приборах типа ТКП такая же, так и в стационарных твердомерах для металла, где применяется метод Роквелла.
Применяются также и другие типы твердомеров для металла – Шора, Виккерса и пр. Их цена зависит от технических характеристик прибора. Например, диапазон цен на портативные динамические твердомеры составляет 30000…50000 руб, на стационарные установки – от 275000 до 420000 руб.
Твердость по Роквеллу
Твердость материалов является интегрирующим показателем их механических свойств. Существует эмпирическое соответствие между значением твердости и рядом механических характеристик (например, предел прочности на сжатие, растяжение или изгиб).
С развитием машиностроения возникла необходимость иметь общие методики измерения твердости. В начале XX века профессором Людвигом была разработана теоретическая часть методики определения твердости алмазным конусом. В 1919 году Хью и Стэнли Роквеллы запатентовали гидромеханическую установку, которая получила имя — твердомер Роквелла.
Актуальность этого устройства вызвана необходимостью применения неразрушающих методов контроля твердости в подшипниковой промышленности. Существующий метод Бринелля (HB) основан на измерении площади отпечатка шарика диаметром 10 мм. Отпечаток формируется с помощью шарика из закаленной стали или карбида вольфрама, который вдавливается в образец с определенным усилием. Метод Бринелля применяется для определения твердости цветных металлов или низколегированных сталей и неприменим для образцов из закаленной стали. Это связано с тем, что рабочая нагрузка составляет 3000 кгс. Шарик деформируется, поэтому метод Бринелля не может считаться неразрушающим методом контроля.
Метод измерения твердости по Роквеллу
Твердость — характеристика материала, противоположная пластичности, способности материала «вытекать» из-под нагрузки. Методика измерения твердости по Роквеллу предназначена для неразрушающего контроля твердости наименее пластичных материалов — сталей и их сплавов. Универсальность метода заключается в наличии трех шкал твердости, которые проградуированы для измерения под одной из трех нагрузок (60, 100 и 150 кгс) для работы с одной из измерительных головок. В качестве рабочего органа измерительной головки применяют алмазный конус с углом 120° и радиусом при вершине 0,2 мм или закаленный шарик диаметром 1/16“ (1,588 мм).
Метод основан на фиксации прямого измерения глубины проникновения твердого тела измерительной головки (индентора) в материал образца. Глубина отпечатка характеризует способность материала сопротивляться внешнему воздействию без образования валика из вытесненного металла вокруг индентора.
Единица твердость по Роквеллу — безразмерная величина, которая выражается в условных единицах до 100. За единицу твердости приняли перемещение индентора на 0,002.
Твердость металла по Роквеллу: таблица
Таблица создана для наглядного сравнения методов Роквелла и Бриннеля.
Измерение твердости по Роквеллу
Металлы обладают достаточно большим количеством физико-механических свойств, которые следует учитывать при их использовании для изготовления различных изделий. Твердость – способность одного материала препятствовать проникновению в него другого, более твердого. Для измерения этого показателя были разработаны самые различные методики тестирования. Часто проводится измерение твердости по Роквеллу (HRC). Этот метод имеет довольно большое количество особенностей, о которых далее поговорим подробнее.
Методика измерения
Метод определения твердости металла по Роквеллу применяется в случае, когда нужно протестировать заготовку небольшой толщины. Кроме этого, подобным образом проверяется твердость поверхностного слоя изделия, к примеру, прошедшего закалку или процесс цементирования.
Проводится определение твердости металлов методом Роквелла следующим образом:
Принцип измерения твердости по Роквеллу
Полученные данные сверяются с табличными значениями, в которых учитывается величина приложенной силы и время выдержки. Рассматриваемая методика позволяет получить показатель твердости в своих условных единицах.
Процесс измерения можно разделить на несколько этапов:
Современное оборудование позволяет существенно упростить процесс и повысить точность получаемых результатов в ходе проводимых измерений.
Шкалы твердости
Мера твердости по Роквеллу обозначается HRC. За время проведения тестирования различных металлов было разработано 11 шкал, которые отличаются по соотношению геометрических размеров наконечника и прилагаемой нагрузки. Стоит учитывать, что сегодня в качестве вдавливаемого тела сегодня используются не только алмазные наконечники. Распространение получили:
Обозначение проводится с использованием заглавных букв латинского алфавита.
Шкалы для определения твердости по Роквеллу
Прочему так важно учитывать тип применяемой шкалы? Причин довольно много:
Получаемые результаты важны при изготовлении подшипников и прочих ответственных элементов, используемых при создании автомобилей или авиатехники. Размерность твердости, определяемой по Роквеллу, учитывается и при выборе изделий из закаленной стали.
Оборудование для проведения измерения
На момент разработки рассматриваемой методики измерения твердости специального оборудования не было. После того, как в машиностроительной и других областях промышленности установили важность этой физико-механической характеристики, было разработано специальное оборудование, которое основано также на вдавливании шарика или конуса в тестируемый объект. Современное оборудование позволяет с высокой точностью контролировать величину прилагаемой силы и времени выдержки. Твердомером измеряется твердость, как правило, небольших объектов, являющимися образцами получаемой заготовки. Это связано с весьма компактными размерами большинства моделей рассматриваемых устройств.
К особенностям применяемого оборудования можно отнести нижеприведенные моменты:
Рассматриваемое оборудование производится достаточно большим количеством различных компаний. При этом стоимость предложения может колебаться в достаточно большом диапазоне.
Преимущества и недостатки метода
Каждый метод вычисления твердости поверхности обладает своими определенными достоинствами и недостатками. Принято считать, что испытание на твердость по Роквеллу и Бринеллю являются основными, так как позволяют получить наиболее точный результат.
К достоинствам метода измерения твердости по Роквеллу HRC можно отнести нижеприведенные моменты:
Однако есть и несколько существенных недостатков, которые также нужно учитывать:
Несмотря на то, что получаемые результаты могут иметь достаточно высокую погрешность, этот метод получил широкое распространение в машиностроительной и других отраслях промышленности, так как на тестирование уходит мало времени.
Показатель твердости зависит от достаточно большого количества моментов, к примеру, химического состава. Кроме этого, металлы могут улучшаться закалкой и другими видами термической обработки. Сегодня можно встретить довольно много методической литературы с таблицами, в которых указывается твердость для распространенных материалов. Принимаются эти значения зачастую при выполнении расчетов или проектировании.
Твердость некоторых материалов, получаемая при проведении тестов по Роквеллу, сравнивается с соответствующим показателем алмаза. Этот материал считается одним из самых твердых. Поэтому твердость алмаза по Роквеллу составляет 100 HRC. Аналогичные показатели стекла и вольфрама будут существенно ниже.
На точность проводимых измерений может оказывать влияние:
В заключение отметим, что сегодня подобные исследования проводятся все реже. Это связано с тем, что при изготовлении заготовок достигают высокой точности химического состава и физико-механических свойств. Поэтому каждой марке металла соответствует определенный показатель твердости по Роквеллу. Измерения зачастую проводятся после выполнения химико-термической обработки, когда от соблюдения применяемой технологии зависит конечный результат.
Твердомеры для металлов. Методы Бринелля и Роквелла
Выбор метода контроля твёрдости зависит от:
Твердомеры Бринелля: методика и оборудование
Используются для определения твёрдости мягких сплавов и цветных металлов, чугуна и незакалённых сталей в соответствии с ГОСТ 9012-59.
Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний позволяет узнать твердость материалов, превышающих показатель обычной стали.Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, алюминия, дюраля, нержавейки, стекла. То есть, твердомер применяют не только к металлам.
Способ определения твёрдости по методу Бринелля заключается во вдавливании в поверхность ОК шарика-индентора (из закалённой стали или из твёрдого сплава). В результате на металле остаётся отпечаток в виде полусферы определённого диаметра и глубины, что позволяет определить меру твёрдости по Бринеллю (НВ).
Современная конструкция твердомера Бринелля позволяет плавно внедрять индентор в образец, обеспечивает высокую точность приложения нагрузки (погрешность не более 1,0 %), что позволяет получать отпечатки с высокой повторяемостью, необходимой для обеспечения точности измерений твердости.
В качестве инденторов используются шарики из твердого сплава диаметром 1; 2,5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала, который разделен на 5 основных групп:
1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — легкие металлы и их сплавы;
5 — свинец, олово.
При измерении твердости по методу Бринелля необходимо выполнять следующие условия:
Твердомеры для металлов, реализующие метод Бринелля, подразделяют на приборы типа ТШ и типа БТБ.
Стационарные твердомеры для металлов типа ТШ, с механическим приводом от электродвигателя, состоят из следующих узлов:
Принцип измерения следующий: деталь испытуемой поверхностью вверх устанавливают на стол, после чего поднимают его до упора, имеющегося в корпусе индентора. Далее включается электродвигатель, который перемещает корпус индентора. Тот, преодолевая сопротивление пружин, приводит в движение шарик, который вдавливается в металл. Конечный результат считывается по шкале. Отношение плеч рычажного механизма, а также суммарный вес грузов на противовесе устанавливается в зависимости от предполагаемого результата измерений (см. таблицу выше).
Твердомеры для металлов типа БТБ имеют некоторые эксплуатационные преимущества перед приборами ТШ: они обладают увеличенными размерами рабочего пространства стола, смена режимов нагружения производится механически, а для отсчёта результата используется более точная оптическая система. Работы на БТБ производят в той же последовательности, что и на приборах ТШ, но образец после испытания сканируется измерительной головкой, с отображением результата на экране.
Данный способ подходит также для определения твёрдости изделий, которые эксплуатируются при повышенных температурах. Для этого на стол устанавливается ванна с нагревающей образец жидкостью, причём для температур до 300 0 С используют масло, а для более высоких температур – солевой расплав. Образец помещают в ванну на асбестовую плиту, после чего измеряют твёрдость обычным методом.
Доступными и простыми в эксплуатации являются портативные (переносные) твердомеры для металлов. Испытательная головка прибора устанавливается на деталь в месте измерения и крепится струбциной или специальными захватами. Нагрузка создаётся вручную, и контролируется по шкале индикатора. Для измерения результата применяют переносной микроскоп. Замеренный отпечаток сравнивается со значениями, которые приводятся в таблицах пересчёта.
Твердомеры для металлов, работающие по методу Бринелля, имеют ряд ограничений:
Твердомеры Роквелла: методика и оборудование
Метод определения твёрдости металлов по состоит во вдавливании алмазного конуса или стального закалённого шарика в предварительно зашлифованную поверхность образца. В отличие от предыдущего способа твёрдость по заключается в определении глубины вдавливания. Метод считается более оперативным, а в таких автоматизируется как процесс испытания, так и последующая обработка его результатов.
Суть метода заключается в том, что предварительно выбирается некоторая реперная точка, и полученная для этой координаты глубина внедрения индентора вычитается из произвольно выбранной наибольшей глубины вдавливания.
Существует 11 шкал определения твердости по методу Роквелла (A; B; C; D; E; F; G; H; K; N; T), основанных на комбинации «индентор (наконечник) — нагрузка». Наиболее широко используются два типа инденторов: шарик из карбида вольфрама диаметром 1/16 дюйма (1,5875 мм) или такой же шарик из закаленной стали либо конический алмазный наконечник с углом при вершине 120°. Возможные нагрузки — 60, 100 и 150 кгс. Величина твёрдости определяется как относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки.
Для обозначения твёрдости, определённой по методу Роквелла, используется символ HR, к которому добавляется буква, указывающая шкалу, по которой проводились испытания (HRA, HRB, HRC).
Таблица определения твердости по Бринеллю
Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | ||||
30 D 2 | 10 D 2 | 2,5 D 2 | 30 D 2 | 10 D 2 | 2,5 D 2 | ||
2,00 | 955 | 4,00 | 229 | 76,3 | 19,1 | ||
2,05 | 910 | 4,05 | 223 | 74,3 | 18,6 | ||
2,10 | 868 | 4,10 | 217 | 72,4 | 18,1 | ||
2,15 | 4,20 | 207 | 68,8 | 17,2 | |||
2,20 | 764 | 4,25 | 201 | 67,1 | 16,8 | ||
2,25 | 735 | 4,30 | 197 | 65,5 | 16,4 | ||
2,30 | 707 | 4,35 | 192 | 63,8 | 16,0 | ||
2,35 | 682 | 4,40 | 187 | 62,4 | 15,6 | ||
2,40 | 659 | 4,45 | 183 | 60,9 | 15,2 | ||
2,45 | 616 | 4,50 | 179 | 59,5 | 14,9 | ||
2,50 | 597 | 4,55 | 174 | 58,1 | 14,5 | ||
2,55 | 579 | 4,60 | 170 | 56,8 | 14,2 | ||
2,60 | 562 | 4,65 | 167 | 55,5 | 13,9 | ||
2,65 | 531 | 4,70 | 163 | 54,3 | 13,6 | ||
2,70 | 516 | 4,75 | 159 | 53,0 | 13,3 | ||
2,75 | 489 | 4,80 | 156 | 51,9 | 13,0 | ||
2,80 | 477 | 4,85 | 152 | 50,7 | 12,7 | ||
2,85 | 455 | 4,90 | 149 | 49,6 | 12,4 | ||
2,90 | 444 | 4,95 | 146 | 48,6 | 12,2 | ||
2,95 | 429 | 5,00 | 143 | 47,5 | 11,9 | ||
3,00 | 415 | 34,6 | 5,05 | 140 | 46,5 | 11,6 | |
3,05 | 401 | 33,4 | 5,10 | 137 | 45,5 | 11,4 | |
3,10 | 388 | 129 | 32,3 | 5,15 | 134 | 44,6 | 11,2 |
3,15 | 375 | 125 | 31,3 | 5,20 | 131 | 43,7 | 10,9 |
3,20 | 363 | 121 | 30,3 | 5,25 | 128 | 42,8 | 10,7 |
3,25 | 352 | 117 | 29,3 | 5,30 | 126 | 41,9 | 10,5 |
3,30 | 341 | 114 | 28,4 | 5,35 | 123 | 41,0 | 10,3 |
3,35 | 331 | 110 | 27,6 | 5,40 | 121 | 40,2 | 10,1 |
3,40 | 321 | 107 | 26,7 | 5,45 | 118 | 39,4 | 9,86 |
3,45 | 311 | 104 | 25,9 | 5,50 | 116 | 38,6 | 9,66 |
3,50 | 302 | 101 | 25,2 | 5,55 | 114 | 37,9 | 9,46 |
3,55 | 293 | 97,7 | 24,5 | 5,60 | 111 | 37,1 | 9,27 |
3,60 | 285 | 95,0 | 23,7 | 5,65 | 109 | 36,4 | 9,10 |
3,65 | 277 | 92,3 | 23,1 | 5,70 | 107 | 35,7 | 8,93 |
3,70 | 269 | 89,7 | 22,4 | 5,75 | 105 | 35,0 | 8,76 |
3,75 | 262 | 87,2 | 21,8 | 5,80 | 103 | 34,3 | 8,59 |
3,80 | 255 | 84,9 | 21,2 | 5,85 | 101 | 33,7 | 8,43 |
3,85 | 248 | 82,6 | 20,7 | 5,90 | 99,2 | 33,1 | 8,26 |
3,90 | 241 | 80,4 | 20,1 | 5,95 | 97,3 | 32,4 | 8,11 |
3,95 | 235 | 78,3 | 19,6 | 6,00 | 95,5 | 31,8 | 7,96 |
Выбор метода в зависимости от условий испытания
Вариант метода | А | В | С | F | N | T |
Форма индентора | Конус | Шарик | Конус | Шарик | Конус | Шарик |
Материал индентора | Алмаз | Сталь | Алмаз | Сталь | Алмаз | Сталь |
Условное обозначение твёрдости | HRA | HRB | HRC | HRF | HRN | HRT |
Диапазон замера твёрдости | 60…80 | 35…100 | 30…70 | 60…100 | 17…92 | 5…94 |
Металлы | Стали весьма высокой твёрдости | Стали средней твёрдости, цветные сплавы | Стали повышенной твёрдости | Тонколистовые металлы | Для испытания тонких или малогабаритных изделий |
Стационарные твердомеры для металлов по методу Роквелла (типа ТК) делятся на приборы с электрическим и механическим приводом. Ручной твердомер ТК включает в себя:
Шкала | Сокращённое обозначение | Испытательная нагрузка | Тип индентора | Область применения | N | s |
---|---|---|---|---|---|---|
A | HRA | 60 кгс | 120° алмазный сфероконический * | Карбид вольфрама | 100 | 0,002 мм |
B | HRB | 100 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | Алюминиевые сплавы, бронза, мягкие стали | 130 | 0,002 мм |
C | HRC | 150 кгс | 120° алмазный, сфероконический | Твёрдые стали с HRB > 100 | 100 | 0,002 мм |
D | HRD | 100 кгс | 120° алмазный, сфероконический | 100 | 0,002 мм | |
E | HRE | 100 кгс | Диаметр 1⁄8 дюйма (3,175 мм) стальной, сферический | 130 | 0,002 мм | |
F | HRF | 60 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
G | HRG | 150 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
* Радиус сферического скругления вершины конуса 0,2 мм |
Факторы, влияющие на точность измерения
К недостатку метода Роквелла относится меньшая точность по сравнению с методами Бринелля и Виккерса.
Если вы хотите приобрести твердомер Бринелля, рекомендуем модель ТР 5008А или модель LC-200R