Что излучает ультразвуковой сигнал

Koltso-Energo

Что такое ультразвук.

Нижней границей ультразвукового диапазона называют упругие колебания частотой от 18 кГц. Верхняя граница ультразвука определяется природой упругих волн, которые могут распространяться только при том условии, что длина волны значительно больше длины свободного пробега молекул (в газах) или межатомных расстояний (в жидкостях и газах). В газах верхний предел составляет »106 кГц, в жидкостях и твёрдых телах »1010 кГц. Как правило, ультразвуком называют частоты до 106 кГц. Более высокие частоты принято называть гиперзвуком.

Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

История ультразвука. Кто открыл ультразвук.

В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт корабля. Результаты опыта оказались неутешительными. Звук колокола (как, впрочем, и подрыв в воде пороховых патронов), давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон. Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо «пьезоэлектричество» от греческого слова, означающего «нажать». Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Получение ультразвука.

Излучатели ультразвука можно разделить на две большие группы:

1) Колебания возбуждаются препятствиями на пути струи газа или жидкости, или прерыванием струи газа или жидкости. Используются ограниченно, в основном для получения мощного УЗ в газовой среде.

2) Колебания возбуждаются преобразованием в механические колебаний тока или напряжения. В большинстве ультразвуковых устройств используются излучатели этой группы: пьезоэлектрические и магнитострикционные преобразователи.

Применение ультразвука.

Многообразные применения ультразвука можно условно разделить на три направления:

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется в таких исследованиях:

Измерение скорости звука в твёрдых телах позволяет определять упругие и прочностные характеристики конструкционных материалов. Такой косвенный метод определения прочности удобен простотой и возможностью использования в реальных условиях.

Ультразвуковые газоанализаторы осуществляют слежение за процессами накопления опасных примесей. Зависимость скорости УЗ от температуры используется для бесконтактной термометрии газов и жидкостей.

На измерении скорости звука в движущихся жидкостях и газах, в том числе неоднородных (эмульсии, суспензии, пульпы), основаны ультразвуковые расходомеры, работающие на эффекте Допплера. Аналогичная аппаратура используется для определения скорости и расхода потока крови в клинических исследованиях.

Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

Методы измерения, основанные на зависимости параметров резонансной колебательной системы от свойств нагружающей его среды (импеданс), применяются для непрерывного измерения вязкости и плотности жидкостей, для измерения толщины деталей, доступ к которым возможен только с одной стороны. Этот же принцип лежит в основе УЗ твердомеров, уровнемеров, сигнализаторов уровня. Преимущества УЗ методов контроля: малое время измерений, возможность контроля взрывоопасных, агрессивных и токсичных сред, отсутствие воздействия инструмента на контролируемую среду и процессы.

Воздействие ультразвука на вещество.

Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия ультразвука различны для разных сред. В газах основным действующим фактором являются акустические течения, ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину и как следствие, больший градиент температуры или концентрации. Этот эффект используется в таких процессах, как:

В ультразвуковой обработке жидкостей основным действующим фактором является кавитация. На эффекте кавитации основаны следующие технологические процессы:

Акустические течения — один из основных механизмов воздействия ультразвука на вещество. Он обусловлен поглощением ультразвуковой энергии в веществе и в пограничном слое. Акустические потоки отличаются от гидродинамических малой толщиной пограничного слоя и возможностью его утонения с увеличением частоты колебаний. Это приводит к уменьшению толщины температурного или концентрационного погранслоя и увеличению градиентов температуры или концентрации, определяющих скорость переноса тепла или массы. Это способствует ускорению процессов горения, сушки, перемешивания, перегонки, диффузии, экстракции, пропитки, сорбции, кристаллизации, растворения, дегазации жидкостей и расплавов. В потоке с высокой энергией влияние акустической волны осуществляется за счёт энергии самого потока, путём изменения его турбулентности. В этом случае акустическая энергия может составлять всего доли процентов от энергии потока.

При прохождении через жидкость звуковой волны большой интенсивности, возникает так называемая акустическая кавитация. В интенсивной звуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко схлопываются при переходе в область повышенного давления. В кавитационной области возникают мощные гидродинамические возмущения в виде микроударных волн и микропотоков. Кроме того, схлопывание пузырьков сопровождается сильным локальным разогревом вещества и выделением газа. Такое воздействие приводит к разрушению даже таких прочных веществ, как сталь и кварц. Этот эффект используется для диспергировании твёрдых тел, получения мелкодисперсных эмульсий несмешивающихся жидкостей, возбуждения и ускорения химических реакций, уничтожения микроорганизмов, экстрагирования из животных и растительных клеток ферментов. Кавитация определяет также такие эффекты как слабое свечение жидкости под действием ультразвука – звуколюминесценция, и аномально глубокое проникновение жидкости в капилляры – звукокапиллярный эффект.

Кавитационное диспергирование кристаллов карбоната кальция (накипи) лежит в основе акустических противонакипных устройств. Под воздействием ультразвука происходит раскалывание частиц, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности частиц. Это приводит к переносу процесса образования накипи с теплообменной поверхности в непосредственно в жидкость. Ультразвук так же воздействует и на сформированный слой накипи, образуя в нем микротрещины способствующие откалыванию кусочков накипи с теплообменной поверхности.

В установках по ультразвуковой очистке с помощью кавитации и порождаемых ею микропотоков удаляют загрязнения как жёстко связанные с поверхностью, типа окалины, накипи, заусенцев, так и мягкие загрязнения типа жирных плёнок, грязи и т.п. Этот же эффект используется для интенсификации электролитических процессов.

Под действием ультразвука возникает такой любопытный эффект, как акустическая коагуляция, т.е. сближение и укрупнение взвешенных частиц в жидкости и газе. Физический механизм этого явления ещё не окончательно ясен. Акустическая коагуляция применяется для осаждения промышленных пылей, дымов и туманов при низких для ультразвука частотах до 20 кГц. Возможно, что благотворное действие звона церковных колоколов основано на этом эффекте.

Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах:

Различают четыре вида мехобработки с помощью ультразвука:

Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. Ультразвук является катализатором, ускоряющим установление равновесного, с точки зрения физиологии состояния организма, т.е. здорового состояния. УЗ оказывает на больные ткани значительно большее влияние, чем на здоровые. Также используется ультразвуковое распыление лекарственных средств при ингаляциях. Ультразвуковая хирургия основана на следующих эффектах: разрушение тканей собственно сфокусированным ультразвуком и наложение ультразвуковых колебаний на режущий хирургический инструмент.

Ультразвуковые устройства применяются для преобразования и аналоговой обработки электронных сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции – т.н.брегговская дифракция зависит от длины волны ультразвука, что позволяет выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

Ультразвук чрезвычайно интересная вещь и можно предположить, что многие возможности его практического применения до сих пор не известны человечеству. Мы любим и знаем ультразвук и будем рады обсудить любые идеи, связанные его применением.

Что излучает ультразвуковой сигнал

Наше предприятие, ООО «Кольцо-энерго», занимается производством и монтажом акустических противонакипных устройств «Акустик-Т». Устройства, выпускаемые нашим предприятием, отличаются исключительно высоким уровнем ультразвукового сигнала, что позволяет им работать на котлах без водоподготовки и пароводяных бойлерах с артезианской водой. Но предотвращение накипи – очень малая часть того, что может ультразвук. У этого удивительного природного инструмента огромные возможности и мы хотим рассказать вам о них. Сотрудники нашей компании много лет работали в ведущих российских предприятиях, занимающихся акустикой. Мы знаем об ультразвуке очень много. И если вдруг возникнет необходимость применить ультразвук в вашей технологии, мы будем рады вам помочь.

Источник

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

Что излучает ультразвуковой сигнал

УЛЬТРАЗВУК И ЕГО ПРИМЕНЕНИЕ

Целью данной работы является изучение особенностей ультразвуковых волн, их применение, а так же ускорения производственных процессов с помощью ультразвука.

УЛЬТРАЗВУК— это упругие волны высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц[2].

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах.

По своей физической природе ультразвук представляет собой упругие волны и в этом он не отличается от звука. Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн ультразвук имеет ряд особенностей:

1) измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел[3].

2) возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность потока энергии пропорциональна квадрату частоты. Ультразвуковые волны большой интенсивности сопровождаются рядом эффектов, которые могут быть описаны лишь законами нелинейной акустики[1].

3) К числу важных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустическая Кавитация — рост в ультразвуковом поле пузырьков из имеющихся субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой У. и захлопываются в положительной фазе давления. При захлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны. Возле пульсирующих пузырьков образуются акустические микропотоки. Явления в кавитационном поле приводят к ряду полезных (получение эмульсий, очистка загрязнённых деталей и др.) явлений[1].

4) Фокусировка УЗ позволяет не только получать звуковые изображения (системы звуковидения и акустической голографии), но и концентрировать звуковую энергию. С помощью УЗ-вых фокусирующих систем можно формировать заданные характеристики направленности излучателей и управлять ими[8].

5)Периодическое изменение показателя преломления световых волн, связанное с изменением плотности в УЗ-волне, вызывает дифракцию света на ультразвуке, наблюдаемую на частотах ультразвукавого диапазона. Ультразвуковую волну при этом можно рассматривать как дифракционную решетку[8].

Скорость распространения ультразвука

Скорость распространения ультразвуковых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука). Уменьшение амплитуды и интенсивности ультразвуковых волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение[8].

Применение ультразвука

В разных средах ультразвук ведет себя по-разному. В газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования ультразвука относятся почти исключительно к жидкостям и твёрдым телам[1].

В обработке металлов

1Применение ультразвук в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию (Рис.1), испускают при этом ртом или имеющим форму параболического зеркала носовым отверстием сигналы чрезвычайно высокой интенсивности. На расстоянии 1 — 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 — 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами[3].

Рис.1 Эхолокация летучей мыши

2Диагностическое применение ультразвука в медицине

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией, ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения[3].

Ультразвук обладает следующими эффектами:

противовоспалительным, рассасывающим действиями;

анальгезирующим, спазмолитическим действиями;

кавитационным усилением проницаемости кожи.

Принцип работы УЗИ-сканера (Рис.2)

Частота ультразвука, необходимая для медицинской визуализации, находится в диапазоне 1 — 20 МГц. Эти колебания получают при использовании пьезоэлектрических материалов. Когда электрическое поле помещается через срезы, оно расширяется или сжимается. При отражении сигнал возвращается, вызывая переменное электрическое поле, которое заставляет кристалл вибрировать[6].

Для достижения пьезоэлектрического эффекта в УЗИ-сканерах используются специальные элементы из кварца, титана или бария. Их толщина подбирается таким образом, чтобы обеспечить лучшее резонирование. На границе двух сред происходит передача или отражение звука, это зависит от того, насколько различны ткани, имеющие общую границу. Чем больше разница, тем сильнее будет отражаться сигнал[6].

уровень сопротивления воздуха и воды различен, поэтому чтобы получить более контрастное изображение кожу пациента смазывают специальным гелем, в котором не могут образовываться воздушные пузырьки[6].

Полученный электрический сигнал усиливается и обрабатывается. Таким образом фиксируется ультразвук, отраженный от препятствия. Обычно кристаллов бывает два – передающий и приемный. Они оба встроены в генератор, представляющий собой устройство, преобразующее электрическую энергию[6].

Изображение передается на экран прибора в виде срезов, окрашенных в виде 64-оттеночной черно-белой шкалы. Эхопозитивные участки при этом имеют темный, а эхонегативные – белый цвет. При обратной регистрации изображении оттенки могут меняться[6].

Рис.2 Принцип работы узи

3Применение ультразвука в военных целях

В 1912 году русский инженер К. В. Шиловский изобрел прибор для предотвращения столкновений судов с айсбергами и массивными льдинами. Работа прибора основывалась на принципе подводной звуковой эхолокации. Эхолокация основана на отражении сигналов различной частоты радиоволн, ультразвука и звука. Первые эхолокационные системы направляли сигнал в определённую точку пространства и по задержке ответа определяли её удалённость при известной скорости перемещения данного сигнала в данной среде и способности препятствия, до которого измеряется расстояние, отражать данный вид сигнала, то есть приема отраженных от объекта эхо-сигналов.

Принцип работы эхолотов

Эхолот состоит из четырех основных элементов: передатчика (излучателя), приемника (датчика), преобразователя (тран-дюсера) и экрана (дисплея).

Передатчик вырабатывает следующие через определенные интервалы времени высокочастотные импульсы. В современных эхолотах применяются частоты 50 и 200 кГц, иногда встречается частота 192 кГц. Излучаемые преобразователем звуковые сигналы распространяются в воде со скоростью около 1500 м/сек. и отражаются от дна, рыб, водорослей, камней и пр. предметов (Рис.3). Достигшие до приемника эхо-сигналы возбуждают в нем электрические импульсы, которые затем усиливаются в преобразователе и поступают в дисплей. Преобразованные результаты зондирования отображаются на экране прибора в удобной для восприятия графической или алфавитно-цифровой форме[7].

Рис. 3. Принцип работы эхолота

Дисплей отображает результаты ультразвукового зондирования и управляет работой прибора. Для этого на нем имеется жидкокристаллический монохромный или цветной экран и клавиатура[7].

4Применение ультразвука в физике

Ультразвук служит мощным методом исследования различных явлений во многих областях физики. Так, например, ультразвуковые методы применяются в физике твёрдого тела и физике полупроводников; возникла целая новая область физики — акусто-электроника.

В радиоэлектронных системах обработки и передачи информации объёмные акустические волны используются в линиях задержки и кварцевых резонаторах для стабилизации частоты. Разработаны и широко применяются приборы на поверхностных акустических волнах : полосовые фильтры, линии задержки, полосовые фильтры для телевидения, синтезаторы частоты, усилитель поверхностной акустической волны типа лампы бегущей волны, акусто-инжекционный транзистор, устройство с переносом заряда акустической волной, конвольверы и корреляторы, использующие поперечный акустоэлектрический эффект, устройство считывания изображений, устройства памяти[5,1].

Ультразвук в радиоэлектронике

В радиоэлектронике часто возникает необходимость задержать один электрический сигнал относительно другого. Удачное решение нашли ученые, предложив ультразвуковые линии задержки (ЛЗ). Действие их основано на преобразовании электрических импульсов в импульсы ультрозвуковых механических колебаний, скорость распространения которых значительно меньше скорости распространения электромагнитных колебаний. После обратного преобразования механических колебаний в электрические импульс напряжения на выходе линии будет задержан относительно входного импульса.

Для преобразования электрических колебаний в механические и обратно используют магнитострикционные и пьезоэлектрические преобразователи. Соответственно этому ЛЗ подразделяются на магнитострикционные и пьезоэлектрические.

Магнитострикционная ЛЗ состоит из входного и выходного преобразователей, магнитов, звукопровода и поглотителей[8].

Входной преобразователь состоит из катушки, по которой протекает ток входного сигнала, участка звукопровода из магнитострикционного материала, в котором возникают механические колебания ультразвуковой частоты, и магнита, создающего постоянное подмагничивание зоны преобразования. Выходной преобразователь по устройству почти не отличается от входного. Звукопровод представляет собой стержень из магнитострикционного материала, в котором возбуждаются ультразвуковые колебания, распространяющиеся со скоростью примерно 5000 м/с. для задержки импульса, например, на 100 мкс длина звукопровода должна быть около 43 см. Магнит нужен для создания начальной магнитной индукции и подмагничивания зоны преобразования.

Поглотители для уменьшения уровня паразитных отраженных сигналов располагаются на обоих концах звукопровода.

Принцип действия магнитострикционной ЛЗ основан на изменении размеров ферромагнитных материалов под воздействием магнитного поля. Механическое возмущение, вызванное магнитным полем катушки входного преобразователя, передается по звокопроводу и, дойдя до катушки выходного преобразователя, наводит в ней электродвижущую силу.

Пьезоэлектрические ЛЗ устроены следующим образом. На пути электрического сигнала ставят пьезоэлектрический преобразователь (пластинку кварца), который жестко соединен с металлическим стержнем (звукопроводом). Ко второму концу стержня прикреплен второй пьезоэлектрический преобразователь. Сигнал, подойдя к входному преобразователю, вызывает механические колебания ультразвуковой частоты, которые затем распространяются в звукопроводе. Достигнув второго преобразователя, ультразвуковые колебания вновь преобразуются в электрические. Но так как скорость распространения ультразвука в звукопроводе значительно меньше скорости меньше скорости распространения электрического сигнала, сигнал, на пути которого был звукопровод, отстает от другого на величину, равную разности скорости распространения ультразвука и электромагнитных сигналов на определенном участке[8].

Механическая обработка сверхтвердых и хрупких материалов

Если между рабочей поверхностью УЗ-вого инструмента и обрабатываемой деталью ввести абразивный материал, то при работе излучателя частицы абразива будут воздействовать на поверхность детали. Материал разрушается и удаляется при обработке под действием большого числа направленных микроударов (рис.4).

Рис.4 Ультразвуковая обработка материалов.

1 – ультразвуковой инструмент;

2 – абразивные зерна;

3 – обрабатываемая деталь

Кинематика ультразвуковой обработки складывается из главного движения – резания, т.е. продольных колебаний инструмента, и вспомогательного движения – движения подачи. Продольные колебания являются источником энергии абразивных зерен, которые и производят разрушение обрабатываемого материала. Вспомогательное движение – движение подачи – может быть продольным, поперечным и круговым. Ультразвуковая обработка обеспечивает большую точность – от 50 до 1 мк в зависимости от зернистости абразива. Применяя инструменты различной формы можно выполнять не только отверстия, но и сложные вырезы. Кроме того, можно вырезать криволинейные оси, изготавливать матрицы, шлифовать, гравировать и даже сверлить алмаз. Материалы, используемые в качестве абразива – алмаз, корунд, кремень, кварцевый песок[8].

Ультразвуковая сварка

Из существующих методов ни один не подходит для сварки разнородных металлов или если к толстым деталям нужно приварить тонкие пластины. В этом случае УЗ-вая сварка незаменима. Ее иногда называют холодной, потому что детали соединяются в холодном состоянии. Окончательного представления о механизме образования соединений при ультрозвуковой сварке нет. В процессе сварки после ввода ультразвуковых колебаний между свариваемыми пластинами образуется слой высокопластичного металла, при этом пластины очень легко поворачиваются вокруг вертикальной оси на любой угол. Но как только ультразвуковое излучение прекращают, происходит мгновенное «схватывание» пластин.

Ультразвуковая сварка происходит при температуре значительно меньшей температуры плавления, поэтому соединение деталей происходит в твердом состоянии. С помощью УЗ можно сваривать многие металлы и сплавы (медь, молибден, тантал, титан, многие стали). Наилучшие результаты получаются при сварке тонколистовых разнородных металлов и приварке к толстым деталям тонких листов. При УЗ-вой сварке минимально изменяются свойства металла в зоне сварки. Требования к качеству подготовки поверхности значительно ниже, чем при других методах сварки. УЗ сварке хорошо поддаются и неметаллические материалы (пластмасса, полимеры)[3,8].

Ускорение производственных процессов с помощью ультразвука

Ультразвуковая дефектоскопия – один из методов неразрушающего контроля. Свойство УЗ распространяться в однородной среде направленно и без существенных затуханий, а на границе раздела двух сред (например, металл – воздух) почти полностью отражаться позволило применить УЗ-вые колебания для выявления дефектов (раковины, трещины, расслоения и т.п.) в металлических деталях без их разрушения[8].

Рис.5 Теневой метод ультразвуковой дефектоскопии.

При помощи УЗ можно проверять детали больших размеров, так как глубина проникновения УЗ в металле достигает 8¸10 м. Кроме того, ультразвуком можно обнаружить очень мелкие дефекты (до 10-6мм). УЗ-вые дефектоскопы позволяют выявлять не только образовавшиеся дефекты, но и определять момент повышенной усталости металла.

Существует несколько методов ультразвуковой дефектоскопии, основными из которых являются теневой, импульсный, резонансный, метод структурного анализа, ультразвуковой визуализации.

Теневой метод основан на ослаблении проходящих УЗ-вых волн при наличии внутри детали дефектов, создающих УЗ-вую тень. При этом методе используется два преобразователя. Один из них излучает ультразвуковые колебания, другой принимает их (рис. 5). Теневой метод малочувствителен, дефект можно обнаружить если вызываемое им изменение сигнала составляет не менее 15¸20%. Существенный недостаток теневого метода в том, что он не позволяет определить на какой глубине находится дефект[8].

Рис. 6 Принцип действия ультразвукового дефектоскопа, основанный на импульсном методе.

Импульсный метод УЗ-вой дефектоскопии основан на явлении отражения ультразвуковых волн. Принцип действия импульсного дефектоскопа показан на( рис.6). Высокочастотный генератор вырабатывает кратковременные импульсы. Посланный излучателем импульс, отразившись, возвращается обратно к преобразователю, который в это время работает на прием. С преобразователя сигнал поступает на усилитель, а затем на отклоняющие пластины электроннолучевой трубки. Для получения на экране трубки изображения зондирующих и отраженных импульсов предусмотрен генератор развертки. Работой высокочастотного генератора управляет синхронизатор, который с определенной частотой формирует высокочастотные импульсы. Частота посылки импульсов может изменяться с таким расчетом, чтобы отраженный импульс приходил к преобразователю раньше посылки следующего импульса. Импульсный метод позволяет исследовать изделия при одностороннем доступе к ним. Метод обладает повышенной чувствительностью, отражение даже 1% УЗ-вой энергии будет замечено. Преимущество импульсного метода состоит еще и в том, что он позволяет определить на какой глубине находится дефект[8].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *