Что излучает радиацию в повседневной жизни

Радиация и радиоактивные артефакты в быту — стоит ли их бояться?

Привет geektimes. На написание этой статьи меня подтолкнула заметка в новостях, в которой фотограф случайно обнаружил, что один из его объективов является радиоактивным (такие действительно были — до 60х годов в стекла объективов добавляли торий). Далее этот фотограф пытался спасти себя и человечество от страшной угрозы, и искал где можно сдать объектив на утилизацию. Надо ли это делать, и насколько опасны подобные предметы? Попробуем разобраться.

В дополнение, простой вопрос читателям на засыпку: гуляя в людном центре города, вы обнаружили предмет с излучением 50мкР/ч, что в 3 раза больше среднестатистического. Что надо делать?

1) Ничего
2) Вызвать милицию
3) Вызвать МЧС
4) Оградить место от посторонних
5) Быстро убежать
6) Ничего — что-то делать уже поздно

Правильный ответ под катом в конце статьи.

Теория

Для начала разберемся, какие уровни облучения являются опасными, а какие нет.

Во-первых, излучения как такового, бояться бессмысленно — оно есть всегда и везде. В интернете легко узнать текущий радиационный фон. Более того, каждую секунду наш организм пронизывают десятки высокоэнергичных частиц из космоса, засечь которые можно даже с помощью цифровой камеры. Поэтому, говоря об излучении, стоит говорить не о его наличии (оно есть всегда), а о поглощенной дозе за определенный промежуток времени. И тут все просто — согласно СанПиН 2.6.1.2800-10, приемлемой дозой для населения от природных источников, считается 5 миллиЗв (или 575000мкР) в год. Что нетрудно перевести в часы, и получить 575000/(365*24) = 65мкР/час. Реально конечно, фон заметно меньше, и в Питере например он составляет около 13мкР/час.

Выше речь шла о природных источниках. Обычная же флюорография дает 0.05мЗв, или 5750мкР, рентген челюсти — 0.02мЗв или 2300мкР. Мало кто знает, но даже при обычном полете на самолете человек подвергается излучению до 200мкР/час, что в 10-20 раз выше земного уровня (на больших высотах уровни космической радиации выше, т.к. она меньше экранируется атмосферой).

Практика

Вооружившись вышеприведенными цифрами, перейдем к практике. Откуда в быту взяться радиации? Вроде бы неоткуда, однако, человек все же может с такими предметами столкнуться — до 60х радиоактивные материалы достаточно широко использовались.

Оптика и объективы

Что излучает радиацию в повседневной жизни

На поверхности такой объектив может давать до 200мкР/час, что приводит в ужас неподготовленного обывателя. Однако, много это или мало? 200мкР/час это уровень излучения в салоне самолета, при котором пилоты летают каждый день по несколько часов, и на здоровье не жалуются. Такой объектив нужно прижать к груди на 30 часов, чтобы получить дозу, эквивалентную одной флюорографии, или на 10 часов к зубу, чтобы получить дозу, эквивалентную рентгену челюсти. Чтобы получить максимальную разрешенную СанПиН-ом годовую дозу в 575000мкР, такой объектив надо носить на теле в течении 120 дней. К тому же, мощность любого источника убывает пропорционально квадрату расстояния, и уже в 20см фон такого объектива не выше нормы. Т.е. если снимать цифровой камерой, не держа ее вплотную к телу, то вреда в общем-то, никакого.

К сожалению, и почта и таможня, в этом плане придерживаются других нормативов — при попытке заказа такого объектива почтой или при попытке провоза в аэропорту, он вполне может быть изъят таможенниками. Де-юре они правы — если спать с таким объективом под подушкой каждый день, можно превысить годовую дозу, де-факто, конечно такие изъятия весьма абсурдны.

Светомасса постоянного действия (СПД)

Что излучает радиацию в повседневной жизни

Фон от такого компаса (точнее, желтых меток на нем) может достигать 300мкР/ч, так что носить его на руке все же не стоит (речь идет о старых моделях, современные выглядят также, но состав массы уже другой). Если же компас просто лежит на полке, то опасности нет, но есть одно «но» — в случае если светомасса не осыпается. Попадание частицы радия в организм может вызвать рак, что разумеется, весьма серьезно. СПД также может выделять газ радон, поэтому хранить такой предмет нужно в герметичном пакете.

Урановое стекло

Еще один интересный исторический артефакт — урановое стекло, весьма активно выпускалось в прошлом веке. Уровень радиации от него весьма мал, и опасности оно не представляет, но само производство было весьма вредным, сейчас такое стекло разумеется не делают. Поэтому такие предметы имеют хоть и небольшую, но историческую ценность.

Интересная особенность таких стекол: они светятся в ультрафиолете, пример фото с eBay:

Что излучает радиацию в повседневной жизни

Тритиевые брелки

Широко продаются сейчас в магазинах, ассортимент от самых маленьких светящихся брелков, до больших фонариков.

Что излучает радиацию в повседневной жизни

Светятся слабо, заявленный срок свечения около 10 лет, если не глотать, опасности не представляют.

Контрольные источники в военных дозиметрах

На практически любой интернет-барахолке можно увидеть старые списанные дозиметры (например ДП-5А), в составе которых имеется контрольный источник для проверки. Скриншот с avito:

Что излучает радиацию в повседневной жизни

Разумеется, реальной опасности для пользователя такие источники не представляют, иначе их не клали бы в комплект. Однако опасность тут в другом — покупка/продажа таких радиоактивных материалов регламентируется статьей 220 УК РФ, по которой наказание может составлять до 2х лет тюремного заключения. Что очевидно, вряд ли полезно для здоровья… Неизвестно, есть ли реальная практика таких дел, но рисковать все же не стоит.

Как подсказали в комментариях, существуют контрольные источники от старых дозиметров (например ДП-2), которые могут давать более 3000мкР/ч, такие разумеется не стоит хранить в любом случае.

Выводы

Надеюсь, примерное понимание об источниках и уровнях возможной бытовой радиации, у читателей появилось. Если очень кратко, то столкнуться в быту с источником излучения, дающими реальную опасность для здоровья, практически невозможно (если конечно, не жить в Чернобыле). Другое дело — свалки и прочие заброшенные места, попасться там теоретически может что угодно, но к «бытовым» это отнести уже сложно (желающие могут изучить эту тему более подробно).

Что делать, если все-таки дома обнаружился фонящий предмет, например, дедушкины часы? Для начала, стоит найти дозиметр и измерить излучение, определить расстояние на котором фон не выше нормы. Вполне возможно что часы вовсе не излучают, а используемая в них краска не радиоактивна. Если все же радиоактивна, есть несколько вариантов:

1) Если вещь дорога как память или семейная реликвия — достаточно положить предмет на безопасное расстояние, при котором излучение не превышает норму (если дозиметра нет, таким расстоянием можно считать 1 метр, в реале скорее всего будет меньше). В случае СПД, стоит также положить часы в герметичный пакет и разумеется, исключить доступ детей. Как подсказали в комментариях, нельзя использовать пылесос в случае просыпания СПД — микрочастицы могут разлететься по всему помещению. В случае объективов все проще, торий сплавлен со стеклом, и осыпаться и попасть в организм он не может. Кстати, вопреки популярному мифу, при хранении рядом с предметом, другие предметы не становятся радиоактивными. Так что хранение часов в шкафу на полке в этом плане вполне безопасно.

2) Если принципиально не хочется иметь дома радиоактивный предмет, можно позвонить в МЧС и узнать насчет утилизации. Но лучше вначале спросить на «часовых» или «исторических» интернет-форумах — возможно данные часы имеют историческую ценность, и коллекционеры с удовольствием их заберут, несмотря на фон.

И наконец, обещанный ответ на вопрос в начале статьи.

50мкР/ч — это уровень гранитной набережной Санкт-Петербурга. Исходя из этого, правильную цифру ответа читатели могут выбрать сами.

Источник

Источники радиации вокруг нас: От сигарет и бананов до сотовых телефонов

Что излучает радиацию в повседневной жизни

Но, если задуматься, в повседневной жизни мы постоянно с сталкиваемся с радиацией в малых дозах. И это, в общем-то, не вызывает ни у кого беспокойства и страха.

Люди боятся того, что они подвергаются воздействию излучения все время, то ли от далекой ядерной аварии или мобильного устройства. Как правило, они ошибаются.

Редакция Gizmodo предлагает взглянуть на самые главные источники радиации, которые окружают нас едва ли не постоянно.

Что мы подразумеваем под «радиацией»?

Радиация — это просто красивое слово для обозначения энергии, которая распространяется от источника в виде волн.

Она включает в себя электромагнитное излучение, например радиоволны, микроволны, видимый свет, и рентгеновские лучи, а также некоторые элементы с высокой энергией излучения, которые со временем естественным образом теряют активность, — Альфа-частицы, Бета-частицы, и свободные нейтроны.

Когда мы пытаемся определить, является ли источник излучения вредным для человека, то мы рассматриваем два фактора: сила электромагнитного поля вокруг объекта (т. е., сколько радиации), и «энергетический уровень» излучения волн, которые связаны с их частотой (чем выше частота — тем большая энергия).

Источники и материалы, которые могут привести к повреждению биологических тканей или ДНК, называются непосредственно ионизирующим излучением. Они включает в себя высокоэнергетические электромагнитные волны — гамма-лучи, X-лучи, и в верхней части УФ-спектра, а также энергетические частицы, образующиеся при радиоактивном распаде.

Для измерения эффективной и эквивалентной доз ионизирующего излучения была введена единица Зиверт (зв), которая определяет относительную биологическую эффективность различных источников ионизирующего излучения.

Чаще используется кратная единица — Микрозиверт (мкзв), равная 1/1000000 Зиверта.

Имея это в виду, давайте взглянем на некоторые из радиационных источников, с которыми мы можем столкнуться в нашей повседневной жизни.

Вот наиболее радиоактивные объекты в окружающем нас мире, а также правдивая информация о том, какие из них вызывают проблемы со здоровьем.

Источники радиации в повседневной жизни

Бананы

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще — бананы.

Кстати, калий-40, если верить ученым, имеет самый большой период полураспада — более миллиарда лет.

Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь – они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения.

В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Сканеры весьма маломощны — пассажр получает дозу рентгеновского излучения от 0,015 до 0,88 мкзв, что совершенно безопасно для него. Для сранения, человеку понадобится пройти 1-2 тысячи раз через сканер аэропорта, чтобы получить дозу радиации сравнимую с одним рентгеновским исследованием грудной клетки.

Рентгеновский снимок

Еще один источник так называемой «бытовой радиации» — рентгеновское обследование. Например, при одном снимке зуба пациент получает дозу радиации от 1 до 5 мкзв. А при рентгеновском снимке грудной клетки — от 30 до 300 мкзв.

Напомним, что опасной дозой считается разовая доза 1 зв, а смертельной — 3-10 зиверт.

Электро-лучевые трубки (дисплеи старых телевизоров и компьютеров)

Дисплеи излучают электромагнитые излучения, но только малая доля этого излучения (в рентгеновской части) несет потенциальную опасность, и только если вы используете ЭЛТ-дисплей (ЖК-и плазменные экраны не способны испускать рентгеновское излучение).

Среднегодовая доза от просмотра телевизоров с ЭЛТ-дисплеем составляет 10 мкзв в год, а ЭЛТ-дисплей старого компьютера даст дозу 1 мкзв в год.

В воде также содержится радиоактивные частицы, но в ничтожно малых количествах. Основным источником радиации в воде явлется тритий — естественный радиоактивный изотоп водорода, получаемый при соударениях космических лучей с молекулами воды в воздухе.

В среднем, мы поглощаем около 50 мкзв радиации от трития в нашей питьевой воде каждый год.

Бетон

Бетон является вторым наиболее используемым материалом на Земле после воды, и в нем также содержатся источники следов радиоактивных элементов.

В среднем, люди получают 30 мкзв радиации от бетона тротуаров, дорог и зданий в год.

Фоновое излучение Вселенной

Реликтовое космическое излучение есть везде, это следы Большого Взрыва.

На Земле мы защищены от его воздействия благодаря атмосфере и ее озоновому слою. Тем не менее, некоторые космические излучения проходят через этот естественный фильтр на землю.

На уровне моря годовая доза радиации от реликтового излучения Вселенной составляет примерно 3 мкзв, — что эквивалентно примерно 10 флюорографий.

Ваше Собственное Тело

Да, ваш организм также вырабатывает биологически эффективную радиацию! В основном, мы говорим о распаде радиоактивных атомов калия (будь прокляты эти бананы!).

В теле среднего человека содержит около 30 мг радиоактивного калия-40, который производит радиоактивные бета-частицы, когда распадается.

В результате, мы получаем от своего тела дозу радиации около 3,9 мкзв каждый год. Хорошая работа! 🙂

Собственное излучение Земли

Земля сама по себе является источником радиации, благодаря медленному распаду изотопов урана и тория в земной коре и мантии.

На самом деле, из-за естественной радиактивности наша планета производит примерно 50% тепла и это дает свои плоды!

И эта земная радиация дает нам дозу примерно 4,8 мкзв в год.

Реакторы ядерных электростанций

Не считая катастраофических аварий наподобие Чернобыльской, а также других нештатных ситуаций радиационная безопасноть ядерные реакторы достаточно высока.

К примеру, годовой предел дозы для облучения радиацией работника ядерной электростанции в США составляет 500 мкзв.

Космическое Пространство

Космическое пространство, как мы знаем, не очень благоприятная среда для деятельности человека.

Вне защиты озонового слоя Земли, уровень ультрафиолетового и космического излучения в сотни раз выше, чем на Земле.

Шестимесячное пребывание на Международной космической станции (МКС) эквивалентно примерно 800 мкзв дополнительного облучения, в то время как в шестимесячное путешествие к Марсу могло бы в теории дать дозу до 2500 мкзв (на основе измерений, сделанных аппаратом NASA Curiosity во время его путешествия длиной 350 миллионов миль).

Радиационное облучение является одной из самых больших медицинских проблем для любых будущих длительных космических миссий.

Сигареты

Всем изветно, что курение вызывает рак. Отчасти, это потому, что сигареты буквально радиоактивные!

Исследователи подсчитали, что осаждение радиоактивного свинца в легких курильщиков приводит к годовой дозе в 1600 мкзв. Это эквивалентно дозе, получаемой космонавтом, проведших год в космическом пространстве.

На практике это число может варьироваться в зависимости от того, являетесь ли вы заядлым курильщиком или любителем.

А как насчет сотовых телефонов, маршрутизаторов WiFi и Bluetooth?

Оказывается, эти технологии хоть и имеют радиацию, но излучают очень мало энергии, к тому же, неионизирующих формы, что не ведет к повреждению тканей человека.

Наши телекоммуникационных системы используют низкие формы энергии излучения именно потому, что эти виды излучения были признаны безвредными для живых организмов.

Радиволны, которые используют телекоммуникационные системы, являются электромагнитными полями, которые в отличие от ионизирующего излучения, такого как рентгеновские лучи или гамма-лучи, не могут ни разрывать химические связи, ни вызывают ионизацию в организме человека.

Большое количество исследований проведенных за последние два десятилетия, чтобы оценить, насколько мобильные телефоны представляют собой потенциальную опасность для здоровья человека, не установили никаких негативных последствий для здоровья.

Мобильные телефоны работают на частотах от 450 МГц и 2,7 ГГц. Главная опасность в этом частотном диапазоне, по данным ВОЗ, является тепло. Но, максимальная выходная мощность наших сотовых телефонов обычно находится в диапазоне от 0,1 до 2 Вт. Этой мощности явно недостаточно, чтобы вызвать даже ожог первой степени от телефона.

Нет также никакой опасности от беспроводных сетей (WiFi и др.), которые работаеют в радиочастотных диапазонах: 2.4 ГГц, 3.6 ГГц, 4.9 ГГц, 5 ГГц и 5,9 ГГц.

За последние 15 лет исследования, проведенные с целью изучения потенциальной связи между радиочастотными-передатчиками и заболеваемостью раком, не предоставили доказательства того, что воздействие радиоизлучения от передатчиков повышает риск развития рака.

Более того, долгосрочные исследования на животных не выявили повышенный риск развития рака от воздействия радиочастотных полей, даже на уровнях, которые значительно выше, чем базовых сотовых станций и беспроводных сетей.

Источник

7 главных источников радиации, которые окружают нас в повседневной жизни

Что излучает радиацию в повседневной жизни

В повседневной жизни мы постоянно с сталкиваемся с радиацией в малых дозах. И это, в общем-то, не вызывает ни у кого беспокойства и страха.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь — они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения. В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Есть и еще один вид сканера, в нем используются волны миллиметрового диапазона. Он представляет собой прозрачную капсулу с вращающимися антеннами.

В отличие от металлодетекторных рамок такие устройства считаются более эффективными в поиске запрещенных к провозу вещей. Производители сканеров утверждают, что они абсолютно безопасны для здоровья пассажиров. Однако масштабных исследований на этот счет в мире до сих пор не проводилось. Поэтому мнения специалистов разделились: одни поддерживают производителей, другие полагают, что определенный вред подобные устройства все же наносят.

Например, биохимик из Калифорнийского университета Дэвид Агард считает, что рентгеновский сканер все же вреден. По мнению ученого, человек, проходящий досмотр на этом устройстве, получает в 20 раз больше облучения, чем заявлено производителями.

Еще один источник так называемой «бытовой радиации» — рентгеновское обследование. Например, один снимок зуба выдает от 1 до 5 мкЗв (микрозиверт — единица измерения эффективной дозы ионизирующего излучения). А снимок грудной клетки — от 30?300 мкЗв. Смертельной считается доза радиации, равная примерно 1 зиверту.

Согласно исследованию врачей, 27 процентов всего излучения, которое человек получает в течение жизни, приходится именно на медицинские обследования.

В 2008 году в мире активно заговорили о том, что помимо прочих «вредностей» в табаке содержится еще и токсический агент полоний-210.

Если верить данным Всемирной организации здравоохранения, токсические свойства этого радиоактивного элемента гораздо выше, чем у любого известного цианида. По мнению руководства компании British American Tobacco, умеренно курящий человек (не более 1 пачки в день) получает лишь 1/5 часть суточной дозы изотопа.

Бананы и другая еда

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще — бананы.

Кстати, калий-40, если верить ученым, имеет самый большой период полураспада — более миллиарда лет. Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Авиапутешествия и космическая радиация

Излучение из космоса частично задерживается атмосферой Земли. Чем дальше в небо, тем выше уровень радиации. Именно поэтому при путешествии на самолете человек получает немного повышенную дозу. В среднем она составляет 5 мкЗв за один час полета. При этом летать больше 72 часов в месяц специалисты не рекомендуют.

Собственно, одним из главных источников является Земля. Излучение происходит за счет содержащихся в почве радиоактивных веществ, в частности, урана и тория. Средний радиационный фон составляет порядка 480 мкЗв в год. При этом в некоторых регионах, например, в индийском штате Керала, он значительно выше из-за внушительного содержания тория в грунте.

А как же мобильники и WI-FI-маршрутизаторы?

Вопреки распространенному мнению, от этих устройств не исходит «радиационной угрозы». Чего нельзя сказать о телевизорах с электронно-лучевой трубкой и таких же компьютерных мониторах (да, они до сих пор встречаются). Но и в этом случая доза излучения ничтожна. За год от такого устройства можно получить лишь до 10 мкЗв.

Доза радиации, получаемая человеком из естественных и «бытовых» источников, считается безопасной для организма. Специалисты полагают, что накапливаемое в течение жизни облучение не должно превышать 700 000 мкЗв.

Источник

Источники радиации

Навигация по статье

Источники радиации и их влияние на живые и не живые объекты. Искусственные источники радиации, естественные источники радиоактивных излучений, природный радиационный фон, космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.

Источники радиоактивных излучений по природе своего происхождения, можно разделить на две основных группы:

Естественные источники радиации

К естественным источникам радиации относятся:

Космическое излучение

Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.

Космическое излучение состоит:

Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.

Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:

Все это продукты термоядерного синтеза проходящего в недрах Солнца.

Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было

Что получаем в итоге?

В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.

В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это

Излучение от радиоактивных природных изотопов

На нашей планете можно выделить 23 радиоактивных изотопа, которые обладают большим периодом полураспада и которые наиболее часто встречаются в земной коре. Большая часть радиоактивных изотопов содержится в породе в очень малых количествах и концентрациях, и доля создаваемого ими облучения пренебрежимо мала. Но есть несколько природных радиоактивных элементов, которые оказывают влияние на человека.

Рассмотрим эти элементы и степень их влияния на человека.

Радиоактивные изотопы, облучения от которых нельзя избежать:

Радиоактивные изотопы, облучения от которых можно избежать организационными мероприятиями:

Все остальные природные радиоизотопы, содержащиеся как в Земной коре, так и в атмосфере, оказывают пренебрежительно малое влияния на человека.

Если человек, добыл, переработал и выделил природные изотопы из руды или других источников, а затем их применил в строительных конструкция, минеральных удобрениях, машинах и механизмах и так далее, то действие этих изотопов уже будет техногенным, а не естественным и на них должны распространяться нормы для техногенных источников.

Общий фон радиации от естественных источников облучения

Если просуммировать действие всех рассмотренных природных источников излучения, и взять за основу допустимые нормативные дозы радиации от каждого из них, то получим допустимое нормативное значение общего радиационного фона от природных источников радиации.

Если действие радона исключаем, как оно и должно быть, то получаем, что нормальный радиационный фон от природных источников радиации не должен превышать

Почему такая большая разница, аж в 8 раз, и к тому же в одних и тех же нормативных документах. Да все очень просто! Техногенное действия человека, привели к тому, что радиоактивные элементы стали массово применяться от техники, строительства, минеральных удобрений до атомных взрывов и АЭС с их авариями и сбросами. В результате, мы сами себе создали среду, в которой нас окружают радиоактивные изотопы с периодом полураспада до нескольких тысяч лет, то есть уже хватит не только нам, но и сотням поколений людей после нас.

То есть, уже трудно найти территории на Земле с действительно нормальным естественным радиационным фоном (но пока еще есть такие). Вот поэтому, нормативные документы и допускают проживание человека в обстановке с приемлемым уровнем радиации. Он не безопасный, он именно приемлемый.

И с каждым годом этот приемлемый уровень, в результате техногенного действия человека, будет только увеличиваться. Тенденций к его уменьшению нет, а вот статистика по онкологическому действию даже малых доз радиации, становится с каждым годом подробней и устрашающей, и поэтому менее доступной для широких масс.

Радон

Радон тяжелый газ, редко встречающийся в природе, не имеет запаха, вкуса и цвета.

Радон относится к числу наименее распространенных химических элементов на нашей планете.

Плотность радона в 8 раз выше плотности воздуха. Радон растворим в воде, крови и других биологических жидкостях нашего организма. На холодных поверхностях радон легко конденсируется в бесцветную фосфоресцирующую жидкость. Твердый радон светится бриллиантово-голубым светом. Период полураспада 3,82 дня.

Основным источником радона, являются горные и осадочные породы, содержащие уран 238 U. В процессе цепочки распадов радиоактивных изотопов уранового ряда, образуется радиоактивный элемент радий 226 Ra, распадаясь который и выделяет газ радон 222 Rn. Радон накапливается в тектонических нарушениях, куда он поступает по системам микротрещин из горных пород. Радон не распространен по Земной коре равномерно, а скапливается наподобие всем известного природного газа, только в несравнимо меньших объемах и концентрациях.

Облучение радоном происходит в замкнутых пространствах, где способен накапливаться газ радон, поднимающийся из трещин и разломов в земной коре. К таким замкнутым пространствам можно отнести: шахты, пещеры, подземные сооружения (бункеры, землянки, погреба и т.п.), жилые и не жилые помещения с нарушенной гидроизоляцией фундамента и плохо работающей вентиляцией.

Как попадает радон в помещение?

Если к примеру жилой дом расположен в районе скопления радона и под фундаментом дома в земной коре имеется трещина, то радон может проникать, сначала в подвальные помещения, а далее через систему вентиляции в выше расположенные помещения (квартиры).

Попадание радона в жилое помещение возможно, если будут нарушены сразу несколько строительных норм при строительстве жилого здания:

Если все строительные нормы соблюдены, то даже наличие залежей радона под жилым домом не приведет к дополнительному облучению радиацией, радон просто не будет попадать в жилые помещения. То есть облучение радоном происходит только при нарушении норм проектирования и строительства зданий и сооружений, из-за халатности ответственных лиц или жажды сэкономить на строительстве.

При нормальных условиях человек не должен подвергаться действию радона.

Если человек подвергается действию радона, то в 99% случаев это вызвано нарушением действующих норм и правил.

Не стоит пренебрегать опасностью радона. Он опасен! Если есть основания и сомнения, лучше провести замеры радона у себя в жилом помещении, особенно если это коттедж или частный дом.

Влияние радона на живые организмы.

Радон опасен для живых организмов. Попадая внутрь организма через дыхательные пути, радон растворяется в крови, а продукты его распада быстро разносятся по всему телу и приводят к внутреннему массированному облучению. Сам радон распадается на другие радиоактивные элементы в течении 4 суток. А радиоактивные продукты распада радона впоследствии облучают организм в течении 44 лет. Наиболее опасными продуктами распада радона являются радиоактивные изотопы полония 218 Po и 210 Po.

Радон занимает первое место среди причин вызывающих рак легких. Так же установлено что радон накапливается в мозговых тканях человека, что так же приводит к развитию рака головного мозга. И это далеко не все примеры губительного действия радона на организм человека.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *