Что значит упростить дробь

Как сокращать дроби: простые примеры с подробными решениями

Содержание:

В этой статье коротко предоставим информацию о том, как сокращать дроби. Сначала приведем немного теоретической части, а затем подкрепим ее решением практических задач.

Что означает сократить дробь

Как сокращаются дроби

Что значит упростить дробь

Как привести дробь к несократимому виду

Обычно алгебраическое решение любой задачи по сокращению дробей сводится к получению равной дроби, но в несокращаемом виде. Чтобы получить несократимую дробь, ее делят на определенное число, которое называется наибольший общий делитель (сокращенно НОД):

Практически рассмотрим, используя дробь \frac < 6 > < 12 >. Ее можно сократить на НОД, который равняется 6. Тогда 6 : 6 = 1 и 12 : 6 = 2. Следовательно:

Последняя дробь является несократимой.

Следует обратить внимание, что в большинстве случаев если требуется выполнить сокращение дробей, то это значит выполнить до получения несократимой дроби.

Как сократить большую дробь

В качестве нового примера возьмем дробь 144192. Сначала найдем наибольший общий делитель для чисел 144 и 192. Для этого можно применить метод разложения на простые множители:

144 : 2 = 72 192 : 2 = 96

72 : 2 = 36 96 : 2 = 48

36 : 2 = 18 48 : 2 = 24

18 : 2 = 9 24 : 2 = 12

Тогда наибольшим общим множителем для данных чисел будет число 48 = 3 ∙ 2 ∙ 2 ∙ 2 ∙ 2.

Разделив исходную дробь на 48 получим несократимую дробь:

Разберем еще один способ, который позволяет сокращать числитель и знаменатель дроби последовательно на делитель, который без труда определяется по простейшим математическим признакам. Если требуется сократить дробь типа 40008 800, то можно сразу же определить, что здесь присутствует общий множитель 100, который можно вынести за скобку:

Далее невооруженным глазом заметно, что оба числа делятся на 2, а результат опять на 2 и т. д. В конечном итоге получаем несократимую дробь \frac < 5 > < 11 >= \frac < 4000 > < 8800 >. Теперь можно сказать, что наибольшим общим делителем для данной дроби было число 800.

В заключении заметим, что если знаменатель дроби представляет собой числитель, возведенный в квадрат, то такая дробь в несокращаемом виде всегда будет представлять собой: 1 – в числителе + число, значившееся числителем до сокращения, в знаменателе:

Источник

5.4.2. Примеры сокращения обыкновенных дробей

Деление и числителя и знаменателя дроби на их общий делитель, отличный от единицы, называют сокращением дроби.

Что значит упростить дробьЧтобы сократить обыкновенную дробь, нужно разделить ее числитель и знаменатель на одно и то же натуральное число.

Это число является наибольшим общим делителем числителя и знаменателя данной дроби.

Возможны следующие формы записи решения примеров на сокращение обыкновенных дробей.

Учащийся вправе выбрать любую форму записи.

Примеры. Упростить дроби.

Что значит упростить дробьСократим дробь на 3 (делим числитель на 3;

делим знаменатель на 3).

Что значит упростить дробьСокращаем дробь на 7.

Что значит упростить дробьВыполняем указанные действия в числителе и знаменателе дроби.

Полученную дробь сокращаем на 5.

Что значит упростить дробьСократим данную дробь 4) на 5·7³ — наибольший общий делитель (НОД) числителя и знаменателя, который состоит из общих множителей числителя и знаменателя, взятых в степени с наименьшим показателем.

Что значит упростить дробьРазложим числитель и знаменатель этой дроби на простые множители.

Что значит упростить дробьПолучаем: 756=2²·3³·7 и 1176=2³·3·7².

Определяем НОД (наибольший общий делитель) числителя и знаменателя дроби 5).

Это произведение общих множителей, взятых с наименьшими показателями.

НОД(756; 1176)=2²·3·7.

Что значит упростить дробьДелим числитель и знаменатель данной дроби на их НОД, т. е. на 2²·3·7 получаем несократимую дробь 9/14.

Что значит упростить дробьА можно было записать разложения числителя и знаменателя в виде произведения простых множителей, не применяя понятие степени, а затем произвести сокращение дроби, зачеркивая одинаковые множители в числителе и знаменателе. Когда одинаковых множителей не останется — перемножаем оставшиеся множители отдельно в числителе и отдельно в знаменателе и выписываем получившуюся дробь 9/14.

Что значит упростить дробьИ, наконец, можно было сокращать данную дробь 5) постепенно, применяя признаки деления чисел и к числителю и к знаменателю дроби. Рассуждаем так: числа 756 и 1176 оканчиваются четной цифрой, значит, оба делятся на 2. Сокращаем дробь на 2. Числитель и знаменатель новой дроби — числа 378 и 588 также делятся на 2. Сокращаем дробь на 2. Замечаем, что число 294 — четное, а 189 — нечетное, и сокращение на 2 уже невозможно. Проверим признак делимости чисел 189 и 294 на 3.

(1+8+9)=18 делится на 3 и (2+9+4)=15 делится на 3, следовательно, и сами числа 189 и 294 делятся на 3. Сокращаем дробь на 3. Далее, 63 делится на 3, а 98 — нет. Перебираем другие простые множители. Оба числа делятся на 7. Сокращаем дробь на 7 и получаем несократимую дробь 9/14.

Источник

Сокращение дробей: правила и примеры

Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.

Что такое «сокращение дробей»

В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.

Приведение дробей к несократимому виду

Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.

Приведение дроби к несократимому виду

Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.

6 24 = 6 ÷ 6 24 ÷ 6 = 1 4

Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.

Правило сокращения дробей

Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.

Правило сокращения дробей

Чтобы сократить дробь нужно:

Рассмотрим практические примеры.

Пример 1. Сократим дробь.

Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.

182 195 = 182 ÷ 13 195 ÷ 13 = 14 15

Готово. Мы получили несократимую дробь, которая равна исходной дроби.

Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.

Пример 2. Сократим дробь

Для этого представим исходную дробь в виде:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7

Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49

Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.

Пример 3. Сократим дробь

2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44

20 44 = 20 ÷ 2 44 ÷ 2 = 10 22

Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:

Источник

Сокращение обыкновенных дробей

Что значит упростить дробь

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое «сокращение дробей»

Математика любит точность и краткость: лохматыми громоздкими числами ее расположение не заслужить. Поэтому, следуя негласному правилу, сокращайте все, что можно сократить.

Сократить дробь — значит разделить ее числитель и знаменатель на их общий делитель. Общий делитель должен быть положительным и не равен нулю и единице.

В результате сокращения вы получаете новую дробь, равную исходной дроби. Такие дроби равны по основному свойству:

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число — получится дробь, равная данной.

С основным свойством дроби знакомятся в 5 классе, но встречаться оно будет до самого окончания школы. Поэтому запоминаем, как выглядит основное свойство дроби в виде буквенных выражений:

Что значит упростить дробь= Что значит упростить дробь

Что значит упростить дробь= Что значит упростить дробь

где a, b, m — натуральные числа.

Графически сокращение дробей обычно записывается вот так:

Что значит упростить дробь

Числитель и знаменатель зачеркиваются черточками. В этом примере числитель — 8, знаменатель — 36. Справа над ними записывают результаты деления числителя и знаменателя на их общий делитель. Общий делить 8 и 36 — 4. Это число не нужно записывать.

Больше наглядных примеров и понятных объяснений — на курсах обучения математике в онлайн-школе Skysmart.

Пример 1. Сократим обыкновенную дробь Что значит упростить дробь

Разделим числитель и знаменатель на общий делитель 3.

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 2. Сократим обыкновенную дробь Что значит упростить дробь

Разделим числитель и знаменатель на общий делитель 2.

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Приведение дробей к несократимому виду

Смысл сокращения дробей в том, чтобы в результате сокращения в числителе и знаменателе оказались наименьшие из возможных чисел.

Так, в результате сокращения в примере 2, мы из дроби Что значит упростить дробьполучили дробь Что значит упростить дробь

Выходит, что дробь выдержит еще одно сокращение и придет к виду Что значит упростить дробь

Сокращая дробь, стремитесь в итоге получить несократимую дробь.

Разделите числитель и знаменатель дроби на их НОД (наибольший общий делитель). Так вы приведете дробь к несократимому виду.

Что значит упростить дробь— несократимая дробь, так как по свойствам НОД мы знаем, что:

a : НОД(a, b) и b : НОД(a, b) — взаимно простые числа.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, НОД(a, b) = 1.

Пример 3. Приведите обыкновенную дробь к несократимому виду Что значит упростить дробь

Найдем НОД числителя и знаменателя. НОД = 12

Найдем частное: 12 : 12 = 1

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 4. Приведите обыкновенную дробь к несократимому виду Что значит упростить дробь

Найдем НОД числителя и знаменателя. НОД = 5

Найдем частное: 15 : 5 = 3

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Правило сокращения дробей

Чтобы без труда сокращать любую обыкновенную дробь, запомните правило.

Выполняйте сокращение дробей по следующему алгоритму:

В 6 классе каждая вторая задачка — с дробями. Чтобы легко управляться с ними и уметь сокращать любые числа, нужно хорошо потренироваться. Давайте разберем еще несколько примеров сокращения обыкновенных дробей.

Чтобы легко сокращать дроби, нужно уметь быстро находить НОД числителя и знаменателя. Для этого неплохо бы знать таблицу умножения и уметь раскладывать числа на простые множители.

Чтобы найти НОД числителя и знаменателя, разложим числа на простые множители.
36 = 2 * 2 * 3 * 3
84 = 2 * 2 * 3 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 = 12.
НОД 36 и 84 = 12.

Пример 5. Сократите дробь Что значит упростить дробь

Разложим числа в числителе и знаменателе на множители.
135 = 9 * 3 * 5
180 = 9 * 2 * 2 * 5

Мысленно убираем все общие множители и перемножаем оставшиеся.

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 6. Сократите обыкновенную дробь Что значит упростить дробь

Найдем НОД числителя и знаменателя. НОД = 9

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Дробь можно сократить, последовательно сокращая числитель и знаменатель на общий делитель. Такой способ подходит, если в числителе и знаменателе стоят крупные числа, и вы не уверены в подобранном НОД.

Пример 6. Сократите дробь: Что значит упростить дробь

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 7. Сократите дробь Что значит упростить дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

168 = 2 * 2 * 2 * 3 * 7

240 = 2 * 2 * 2 * 2 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 2 * 3 = 24

НОД 168 и 240 равен 24

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 168 : 24 = 7

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 8. Сократите дробь Что значит упростить дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

360 = 2 * 2 * 2 * 3 * 3 * 5

540 = 2 * 2 * 3 * 3 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 3 * 3 * 5 = 180

НОД 360 и 540 равен 180

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 360 : 180 = 2

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено: Что значит упростить дробь= Что значит упростить дробь

Пример 8. Сократите дробь Что значит упростить дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

420 = 2 * 2 * 3 * 5 * 7

2520 = 2 * 2 * 2 * 3 * 3 * 5 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 * 5 * 7 = 420

НОД 420 и 2520 равен 420

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 420 : 420 = 1

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено. Дробь приведена к несократимому виду: Что значит упростить дробь= Что значит упростить дробь

Пример 9. Сократите дробь Что значит упростить дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

1575 = 3 * 3 * 5 * 5 * 7

3450 = 2 * 3 * 5 * 5 * 23

Перемножаем все общие множители между собой 3 * 5 * 5 = 75

НОД 1575 и 3450 равен 72

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 1575 : 75 = 21

Что значит упростить дробь= Что значит упростить дробь= Что значит упростить дробь

Сокращение выполнено. Дробь приведена к несократимому виду: Что значит упростить дробь= Что значит упростить дробь

Иногда разложение на простые множители занимает немало времени, особенно если раскладываемые числа большие, как в двух предыдущих примерах. Чтобы быстро разложить любое число на простые множители, можно обратиться к онлайн-калькулятору — в интернете их много. Воспользуйтесь одним из них.

Если времени совсем не хватает — можно использовать онлайн-калькулятор и для нахождения НОД. Однако не стоит постоянно прибегать к калькулятору для решения задач, пока вы не научитесь уверенно и быстро вычислять сами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *