Что значит цепь замкнута и цепь разомкнута
Замкнутая и разомкнутая электрическая цепь
К основным элементам электрических цепей относятся:
Элементы электрических цепей бывают активными либо пассивными. Пассивными элементами являются провода, потребители и конденсаторы. Активными считаются двигатели, аккумуляторы, которые заряжаются, и источники питания.
Электрическая цепь может находиться в замкнутом или разомкнутом положении.
Электрическая цепь в замкнутом положении
Наиболее простой замкнутой цепью считается соединение проводниками источника питания с приемником. Проводники всегда должны изолироваться.
Для того, чтобы обеспечить стабильную и безопасную работу электроцепи, в нее включают вспомогательные элементы. К ним относятся приборы измерения напряжения и тока, разнообразные включатели и переключатели, а также прочие устройства.
Замкнутая электрическая цепь делится на две составляющие: внутреннюю и внешнюю.
Закон Ома для замкнутой цепи
Закон Ома для замкнутой цепи показывает зависимость силы тока от электродвижущей силы, сопротивления источника питания и сопротивлений нагрузки.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Значение силы тока равняется отношению ЭДС источника к суммарному значению внешнего и внутреннего сопротивления цепи. Данную зависимость опытным путем вывел ученый Георг Ом в начале XIX века и описал ее следующим математическим выражением:
\(ε\) – ЭДС источника питания;
\(R\) – внешнее сопротивление цепи;
\(r\) – внутренне сопротивление источника.
Чтобы рассчитать силу тока на отдельно взятом сопротивлении, используют следующее выражение:
После проведения преобразований, ЭДС источника питания замкнутой цепи с несколькими внешними сопротивлениями (потребителями) будет выглядеть так:
Физическое понимание закона Ома для замкнутой цепи
Замкнутая цепь может быть образована потребителями только в сочетании с источником питания. Ток, который протекает через потребителя, возвращается к источнику. Именно поэтому на силу тока влияет как сопротивление потребителя, так и сопротивление самого источника. Соответствующим образом общее сопротивление любой замкнутой цепи равняется сумме сопротивления потребителя и сопротивления источника.
Физический смысл зависимости силы тока от ЭДС и сопротивлений состоит в том, что с увеличением ЭДС растет энергия носителей зарядов. Это значит, что скорость их упорядоченного движения увеличивается. Однако, если при этом увеличивается сопротивление цепи, их движение замедляется, и соответственно, уменьшается сила тока.
Электроток течет по замкнутой цепи, обязательным условием его бесперебойного движения есть надежные соединения всех элементов.
Не нашли что искали?
Просто напиши и мы поможем
Источниками питания в различных цепях могут быть аккумуляторы, генераторы и гальванические элементы.
Также существуют различные потребители, в основном это осветительные приборы и двигатели различных устройств.
Для надежного соединения используют металлические провода разнообразных размеров и с различными свойствами. Зачастую проводники изолирую между собой.
Для того, чтобы ток начал перемещаться по цепи, должны быть соединены две ее точки, причем в одной из этих точек должен быть избыток носителей заряда. Таким образом, создается разность потенциалов между ними. Главным устройством, создающим такую разность, есть источник питания.
Потребители в электроцепи считаются нагрузками. Нагрузки создают сопротивление течению тока.
Электроток применяют для создания искусственного освещения. Простые электролампочки есть наглядным примером простой замкнутой цепи.
Электрическая цепь в разомкнутом положении
Если заряды не протекают по цепи, то на ее концах есть напряжение. В таком положении цепь, как бы, находится в процессе ожидания соединения данных концов для течения тока. Такая цепь считается разомкнутой.
Для подключения и отключения электролампочек необходим разрыв электроцепи. Для удобного использования были придуманы различные рубильники и выключатели. Их функцией является управление потоком электрических зарядов.
Рубильники есть наглядным примером принципа работы переключателей или выключателей. Однако для их применения в мощных электрических цепях требуется обустройство безопасной эксплуатации. Некоторые части рубильников бывают открытыми, поэтому есть опасность их воспламенения при попадании горючих материалов. На сегодняшний день есть выключатели, защищенные изолирующим корпусом.
Замкнутая и разомкнутая электрическая цепь
Вы будете перенаправлены на Автор24
Электрической цепью называют совокупность различных устройств, которые соединены конкретным способом. Устройства должны обеспечивать путь для протекания электрического тока. Существуют различные элементы цепей, служащие для множества целей. Для описания цепей используют специальные электрические схемы.
В состав любой электрической цепи входят различные элементы:
Различают два вида элементов цепей: пассивные и активные. Пассивные представляют собой соединительные элементы и приборы-потребители электроэнергии, также к пассивным элементам относятся конденсаторы. Активные элементы — это электродвигатели, заряжающиеся аккумуляторы и различные источники ЭДС.
Основными видами электрической цепи являются:
Замкнутая электрическая цепь
Замкнутая электрическая цепь представляет собой наиболее простой вариант соединения. Она состоит из источника электроэнергии, потребителя энергии и соединительных элементов в виде обычных проводов. Провода в цепи обязательно должны иметь соответствующую изоляцию.
Для обеспечения стабильной и безопасной работы электрической цепи ее снабжают дополнительными элементами. Обычно это различные электроизмерительные приборы, с помощью которых можно узнать величину токов и напряжения в системе, а также оборудование, предназначенное для замыкания и размыкания цепи.
Все замкнутые электрические цепи делят на две основные части:
Готовые работы на аналогичную тему
Внутренний участок цепи – непосредственно источник электроэнергии у потребителя.
Внешний участок цепи – система, которая состоит из одного или многих потребителей электроэнергии, а также соединительных проводов и приборов. Все они должны иметь отношение к функционированию замкнутой электрической цепи.
Закон Ома для замкнутой цепи
Закон Ома для замкнутой цепи показывает определенное значение тока. Оно зависит от сопротивления источника, а также от сопротивления нагрузки.
Величина тока в замкнутой цепи, которая состоит из источника цепи, будет равняться отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений. При этом источник тока должен обладать внешним и внутренним нагрузочным сопротивлением.
Такая зависимость была установлена экспериментальным путем в начале 19 века известным ученым Георгом Омом. Он смог описать результаты собственных опытов на математическом уровне.
Закон Ома для замкнутой цепи можно записать следующим образом:
Расчет для определенного сопротивления:
$\varepsilon =I_1 R_1+I_1 r$
$\varepsilon=I_2 R_2+I_2 r$
После подстановки полученных значений, формула приобретает такой вид:
Физический смысл закона Ома для замкнутой цепи
Замкнутую электрическую цепь образуют потребители энергии только в совокупности с источником тока. Проходящий через потребителя ток течет обратно на его источник. Поэтому току достается сопротивление проводника и источника. Из этого складывается общее сопротивление замкнутой цепи, предполагающее наличие двух основных компонентов: сопротивления источника и сопротивления потребителя.
Зависимость тока от электродвижущей силы источника и сопротивления цепи состоит в следующем: при увеличении электродвижущей силы увеличивается энергия носителей зарядов. Это означает, что становится больше скорость движения зарядов в упорядоченном виде. Если увеличивать размер сопротивления цепи, то величина тока будет уменьшаться.
Электрический ток проходит непосредственно по замкнутой цепи. Необходимым условием присутствия электрического тока в цепи является надежное соединение проводниками источника электрической энергии с ее потребителями.
Источники электроэнергии для различной аппаратуры: генераторы, аккумуляторы, гальванические элементы.
В различных устройствах могут быть определенные потребители электрической энергии. Чаще всего их представляют в виде ламп или электродвигателей.
Для соединения источников и потребителей в единую цепь применяют проводники из металлических материалов. Они могут быть различной формы, длины, толщины, обладать определенными техническими характеристиками. Часто применяются проводники, которые изолированы друг от друга.
Для возникновения тока нужно соединить две точки. Одна из точек должна иметь избыток электронов по отношению ко второй точке. Специалисты называют это действие созданием разности потенциалов между точками. Источник тока служит основным элементом для создания разности потенциалов в электрической цепи.
Любой потребитель электрической энергии может являться нагрузкой в цепи. Нагрузка создает сопротивление электрическому току.
Электрический ток активно используют при создании искусственного освещения. Электрические простые лампы служат примером замкнутой цепи.
Разомкнутая электрическая цепь
При отсутствии потока электронов необходимое напряжение источника цепи проявляется на концах точек. В этом случае происходит процесс ожидания момента соединения концов точек, чтобы возобновился поток электронов. Подобную цепь принято называть разомкнутой.
При связывании концов проводов, где существует разрыв, непрерывность всей цепи восстановится. Это основная разница между замкнутой и разомкнутой цепью.
При включении и выключении электрического освещения (лампы) требуется постоянно осуществлять похожие процессы. Для удобства были созданы специальные устройства. Их называют выключателями или рубильниками. Они в автоматическом режиме по сигналу управляют потоками электронов в цепи, контролируя начало и завершение работы электрооборудования.
Рубильники практически идеально подходят для демонстрации принципов работы выключателей и переключателей. Однако при использовании их в больших электрических цепях существует немало проблем, связанных с безопасной эксплуатацией. Так как некоторые части рубильников открыты, то существует вероятность воспламенения горючих материалов. В современных выключателях применяются подвижные и неподвижные контакты, которые защищены изоляционным корпусом.
Сопротивление
Схема из предыдущего раздела не очень практична. На самом деле, собирать ее (напрямую соединять полюсы источника напряжения с помощью только куска провода) может быть довольно опасно. Причина, по которой это опасно, заключается в том, что при таком коротком замыкании величина электрического тока может быть очень большой, а выделение энергии может быть очень значительным (обычно в виде тепла). Обычно на практике электрические цепи строятся таким образом, чтобы максимально безопасно использовать высвобождаемую энергию.
Ток, протекающий через нить накала лампы
Одним из практических и популярных способов использования электрического тока является электрическое освещение. Самая простая форма электрической лампы – это крошечная металлическая «нить» внутри прозрачной стеклянной колбы, которая накаляется добела от тепловой энергии, когда через нее проходит достаточный электрический ток. Как и батарея, она имеет две проводящие точки подключения: одна для входа тока, а другая – для выхода. Схема электрической лампы, подключенной к источнику напряжения, выглядит примерно так:
Рисунок 1 – Ток через лампу
Когда ток проходит через тонкую металлическую нить накала лампы, он встречает большее противодействие движению, чем в обычном толстом куске провода. Это противодействие электрическому току зависит от типа материала, площади его поперечного сечения и температуры. Технически это противодействие известно как сопротивление (можно сказать, что проводники имеют низкое сопротивление, а диэлектрики – очень высокое сопротивление). Это сопротивление служит для ограничения величины тока, проходящего через цепь при заданном напряжении, подаваемом батареей, по сравнению с «коротким замыканием», когда у нас не было ничего, кроме провода, соединяющего один конец источника напряжения (батареи) с другим. Когда ток движется против противодействия сопротивления, возникает «трение». Как и в случае механического трения, трение, создаваемое током, протекающим через сопротивление, проявляется в виде тепла. Концентрированное сопротивление нити накала лампы приводит к тому, что на нити рассеивается относительно большое количество тепловой энергии. Этой тепловой энергии достаточно, чтобы нить накаливания стала раскаленной добела и начала светиться, в то время как провода, соединяющие лампу с батареей (которые имеют гораздо меньшее сопротивление), вряд ли станут хотя бы теплыми, проводя такую же величину тока. Как и в случае короткого замыкания, если целостность цепи нарушена в любой точке, ток прекращается по всей цепи. При установленной лампе, это означает, что она перестанет светиться:
Рисунок 2 – Ток через лампу не течет
Как и прежде, ток не течет, а в точках разрыва доступен весь потенциал (напряжение) батареи, ожидающий соединения, чтобы пересечь этот разрыв и позволить току снова течь. Это состояние известно как разомкнутая цепь, когда разрыв цепи предотвращает протекание тока повсюду. Всё, что требуется, чтобы «разомкнуть» цепь, – это один разрыв. После повторного соединения любых разрывов и восстановления непрерывности цепь называется замкнутой.
Основа для коммутации ламп
То, что мы видим здесь, является основой для включения и выключения ламп дистанционными выключателями. Поскольку любое нарушение непрерывности цепи приводит к прекращению протекания тока по всей цепи, то для управления протеканием тока в цепи мы можем использовать устройство, предназначенное для преднамеренного нарушения этой непрерывности (называемое ключом, или выключателем, переключателем и т.п.) и установленное в любом удобном месте, к которому мы можем провести провода:
Рисунок 3 – Добавление ключа в цепь из батареи и лампы
Таким образом, выключатель, установленный на стене дома, может управлять лампой, установленной в длинном коридоре или даже в другой комнате, далеко от выключателя. Сам ключ состоит из пары проводящих контактов (обычно сделанных из какого-то металла), соединенных механическим рычажным приводом или кнопкой. Когда контакты соприкасаются друг с другом, устанавливается непрерывность цепи, и ток может течь от одного контакта к другому. Когда контакты разделены, течению тока от одного к другому препятствует воздушная изоляция между ними, и непрерывность цепи нарушается.
Выключатель ножевого типа
Рисунок 4 – Выключатель ножевого типа
Ножевой переключатель – это не что иное, как токопроводящий рычаг, свободно поворачивающийся на шарнире, вступающий в физический контакт с одним или несколькими неподвижными контактами, которые также являются токопроводящими. Переключатель, показанный на приведенном выше рисунке, собран на фарфоровом основании (отличный изоляционный материал), с использованием меди (отличный проводник) для «лезвия» и контактов. Ручка сделана из пластика, чтобы изолировать руку оператора от токопроводящего лезвия переключателя при его открытии или закрытии. Ниже показан еще один тип переключателя, с двумя неподвижными контактами вместо одного:
Рисунок 5 – Переключатель ножевого типа с 3-мя контактами
Ножевой переключатель, показанный здесь, имеет одно «лезвие» и два неподвижных контакта, что означает, что он может включать или выключать более одной цепи. На данный момент это не так важно, чтобы просто понять основную идею того, что такое ключ, и как он работает. Ножевые переключатели отлично подходят для иллюстрации основного принципа работы ключа, но они представляют определенные проблемы безопасности при использовании в электрических цепях большой мощности. Открытые проводники переключателя делают очень возможным случайный контакт с цепью, а любая искра, которая может возникнуть между движущимся ножом и неподвижным контактом, может воспламенить любые находящиеся поблизости горючие материалы. В большинстве современных конструкций переключателей движущиеся проводники и контакты закрыты изолирующим кожухом, чтобы уменьшить эти опасности. Фотографии нескольких современных типов переключателей показывают, что механизмы переключения гораздо более скрыты, чем в конструкции ножевого выключателя:
Рисунок 6 – Сравнение размеров переключателей
Разомкнутые и замкнутые цепи
В соответствии с терминологией цепей «разомкнутая» и «замкнутая», переключатель, у которого контакт от одной клеммы подключения соединен с контактом другой клеммы (например, выключатель с лезвием, полностью касающимся неподвижного контакта), обеспечивает непрерывность протекания тока через себя и называется замкнутым переключателем. И наоборот, выключатель, который нарушает целостность цепи (например, выключатель с лезвием, не касающимся неподвижного контакта), не пропускает ток и называется разомкнутым выключателем.
Какую электрическую цепь называют замкнутой и разомкнутой
Простейшая электрическая цепь представляет собой нагрузку, подключенную к источнику питания. Для управления цепью в нее последовательно включают замыкающее устройство (ключ). При замкнутом ключе в цепи возникает электрический ток, а при разомкнутом – ток отсутствует. Именно от положения ключа (замкнутый/разомкнутый) напрямую зависит – какую электрическую цепь называют замкнутой и разомкнутой.
Элементы электрической цепи
Электрическую цепь разделяют на 2 участка – внутренний и внешний. Внутренним участком считается источник питания постоянного или переменного напряжения, а внешним – система, состоящая из нагрузки, приборов и соединительных элементов (проводов). Кроме обязательных элементов – источника и нагрузки, электрическая цепь может включать выключатели, реостаты, предохранительные плавкие или автоматические устройства, приборы контроля и индикации. Нагрузка также может состоять из различных потребителей, подключенных в цепь параллельно или последовательно.
Какую электрическую цепь называют замкнутой
Замкнутая цепь – это непрерывный контур, по которому через нагрузку протекает электрический ток. Простым примером является настольная лампа, подключенная в розетку. Пока кнопка выключателя выключена – цепь разомкнута. При этом тока в цепи нет, поэтому лампочка не светит. Когда же кнопка включена, в цепи протекает электрический ток и лампа светит. Такая цепь называется замкнутой.
Более сложным примером является электросеть квартиры, которая представляет разветвленную цепь, состоящую из отдельных цепей, подключенных к одному источнику. Каждая ветка имеет свой выключатель. В этом случае вся цепь может быть замкнутой или только отдельный ее участок.
Какую электрическую цепь называют разомкнутой
Разомкнутая цепь имеет на своем участке, общем для всех потребителей, разрыв в виде отключенного контакта ключа. При этом цепь может оставаться под напряжением, но ток в такой цепи не возникает.
Электрический ток в замкнутой цепи
Электрический ток – это упорядоченное движение заряженных частиц (в металлическом проводнике – электронов). Ток возникает при замыкании выключателя, образуя непрерывный путь через нагрузку от одного потенциала к другому отличному от первого: от «+» к «-» или от фазы к нулю. Величина тока рассчитывается по закону Ома для замкнутой цепи.
Сила тока I (А) равна отношению электродвижущей силы источника ℰ (В) к суме сопротивления внешней нагрузки и внутреннего сопротивления источника тока R+r (Ом). I = ℰ/(R+r).
Определение работы электрической цепи
На практике определить замкнута или разомкнута цепь можно несколькими способами. Наиболее распространенным способом является индикация. Например, такие электробытовые приборы как светильники не нуждаются в индикации и их включение можно определить визуально, то есть если светильник светит, значит цепь замкнута.
Другой вопрос – как определить цепь с нагревательными или удаленными приборами? Как правило, такая техника как утюг, конвектор, электроплита и др. оснащаются индикаторной лампочкой, свечение которой оповещает о замкнутой цепи и работе прибора. При нагревании до определенной температуры, термостат отключается, разрывая цепь, и лампочка потухает. После остывания на величину температурного гистерезиса, термостат снова включает цепь, в результате чего лампочка индикатора снова светится.
Индикация позволяет определить лишь наличие тока в цепи, а его величина определяется с помощью амперметра, включенного в цепь последовательно. Применяются также бесконтактные измерительные приборы – токоизмерительные клещи. Это портативный прибор, с помощью которого можно измерить электрический ток в изолированном проводнике. Наличие тока всегда свидетельствует о том, что цепь замкнута.
ЭДС разомкнутой и замкнутой цепи
Теоретические сведения
В одной из прошлых тем (условия существования электрического тока) уже затрагивался вопрос о необходимости источника питания для длительного поддержания существования электрического тока. Сам по себе ток, конечно же, можно получать и без таких источников питания. Например, разрядка конденсатора при вспышке фотоаппарата. Но такой ток будет слишком скоротечным. Кулоновские силы всегда стремятся свести разноименные заряды, выровняв тем самым потенциалы по всей цепи. А, как известно, для наличия поля и тока необходима разность потенциалов. Поэтому никак нельзя обойтись без каких-либо других сил, разводящих заряды и поддерживающих разность потенциалов.
Определение. Сторонние силы – силы неэлектрического происхождения, направленные на разведение зарядов.
Эти силы могут быть разной природы в зависимости от типа источника. В батареях они химического происхождения, в электрогенераторах – магнитного. Они-то и обеспечивают существование тока, так как работа электрических сил по замкнутому контуру всегда равна нулю.
Вторая задача источников энергии, помимо поддержания разности потенциалов, – это восполнение потерь энергии на столкновении электронов с другими частицами, вследствие чего первые теряют кинетическую энергию, а внутренняя энергия проводника повышается.
Сторонние силы внутри источника выполняют работу против электрических сил, разводя заряды в стороны, противоположные их естественному ходу (как они движутся во внешней цепи) (рис. 2).
Роль источника тока: разделить заряды за счет совершения работы сторонними силами. Любые силы, действующие на заряд, за исключением потенциальных сил электростатического происхождения (т. е. кулоновских) называют сторонними силами. (Сторонние силы объясняются электромагнитным взаимодействием между электронами и ядрами)
Рис. 2. Схема действия сторонних сил
Аналогом действия источника питания можно считать водяной насос, который пускает воду против ее естественного хода (снизу вверх, в квартиры). Обратно же вода естественным образом под действием силы тяжести спускается вниз, но для непрерывной работы водоснабжения квартиры необходима непрерывная работа насоса.
Электродвижущая сила
ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:
Измеряется в вольтах (В).
ЭДС разомкнутой и замкнутой цепи
Рассмотрим следующую цепь (рис. 3):
Рис. 3. ЭДС разомкнутой цепи
При разомкнутом ключе и идеальном вольтметре (сопротивление бесконечно велико) никакого тока в цепи не будет, и внутри гальванического элемента будет совершаться только работа по разделению зарядов. В этом случае вольтметр покажет значение ЭДС.
При замыкании ключа по цепи пойдет ток, и вольтметр уже не будет показывать значение ЭДС, он будет показывать значение напряжения, такого же, как на концах резистора. При замкнутом контуре:
Здесь: U – напряжение на внешней цепи (на нагрузке и подводящих проводах); U1 – напряжение внутри гальванического элемента.
3) Закон Ома для полной цепи.
Энергетические преобразования в цепи:
— закон сохранения энергии
Закон Ома: Сила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.
1. Если R>>r, то ε=U. Измеряют высокоомным вольтметром при разомкнутой внешней цепи.
A=Aвнутр+ Aвнеш. Тогда: εq=U1q+U2q. Следовательно: ε= U1+U2
ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.