Что значит торжественно равно

Тождественно равные выражения. Тождества

Два выражения, значения которых равны при любых значениях переменных, называют тождественно равными.

Рассмотрим две пары выражений:

1) Что значит торжественно равнои Что значит торжественно равно

Найдем их значения при Что значит торжественно равно

Что значит торжественно равно

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных Что значит торжественно равнои Что значит торжественно равнозначения выражений Что значит торжественно равнои Что значит торжественно равноравны.

2) Что значит торжественно равно

Найдем их значения при Что значит торжественно равно

Что значит торжественно равно

Мы получили один и тот же результат. Однако, можно указать такие значения Что значит торжественно равнои Что значит торжественно равно, при которых значения этих выражений не будут иметь равные значения. Например, если Что значит торжественно равно, то

Что значит торжественно равно

Мы получили разные результаты.

Следовательно, выражения Что значит торжественно равнои Что значит торжественно равноявляются тождественно равными, а выражения Что значит торжественно равноне являются тождественно равными.

Равенство, верное при любых значениях переменных, называется тождеством.

Равенство Что значит торжественно равно— тождество, т.к. оно верно при любых значениях Что значит торжественно равнои Что значит торжественно равно.

Также к тождествам можно отнести равенства, выражающие свойства сложения и умножения чисел:

Что значит торжественно равно

Можно привести и другие примеры тождеств:

Что значит торжественно равно

Тождествами считают и верные числовые равенства.

Очень часто при вычислении значений выражений, легче сначала упростить имеющееся выражение, а затем выполнять вычисления.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения.

К тождественным преобразованиям можно отнести приведение подобных слагаемых и раскрытие скобок.

Примеры:

1) Что значит торжественно равно, мы преобразовали выражение Что значит торжественно равнов выражение Что значит торжественно равно.

2) Что значит торжественно равно, мы преобразовали выражение Что значит торжественно равнов выражение Что значит торжественно равно.

Для того, чтобы доказать, что данное равенство является тождеством (или доказать тождество), используют следующие методы:

1) тождественно преобразуют одну из частей данного равенства, получая другую часть;

2) тождественно преобразуют каждую из частей данного равенства, получая одно и то же выражение;

3) доказывают, что разность левой и правой частей данного равенства тождественно равна нулю.

Также, чтобы доказать, что равенство не является тождеством, достаточно привести контрпример, т.е. указать такое значение переменной (или переменных, если их несколько), при котором данное равенство не выполняется.

Пример: Докажите, что равенство Что значит торжественно равноне является тождеством.

Решение: Приведем контрпример. Если Что значит торжественно равно, то

Что значит торжественно равно

Что значит торжественно равно, следовательно, равенство Что значит торжественно равноне является тождеством.

Поделись с друзьями в социальных сетях:

Источник

Тождественно равные выражения: определение, примеры.

Получив представление о тождествах, логично перейти к знакомству с тождественно равными выражениями. В этой статье мы ответим на вопрос, что такое тождественно равные выражения, а также на примерах разберемся, какие выражения являются тождественно равными, а какие – нет.

Навигация по странице.

Что такое тождественно равные выражения?

Определение тождественно равных выражений дается параллельно с определением тождества. Это происходит на уроках алгебры в 7 классе. В учебнике по алгебре для 7 классов автора Ю. Н. Макарычев приведена такая формулировка:

Тождественно равные выражения – это выражения, значения которых равны при любых значениях входящих в них переменных. Числовые выражения, которым отвечают одинаковые значения, также называют тождественно равными.

Это определение используется вплоть до 8 класса, оно справедливо для целых выражений, так как они имеют смысл для любых значений входящих в них переменных. А в 8 классе определение тождественно равных выражений уточняется. Поясним, с чем это связано.

Два выражения, значения которых равны при всех допустимых значениях входящих в них переменных, называются тождественно равными выражениями. Два числовых выражения, имеющие одинаковые значения, также называются тождественно равными.

В данном определении тождественно равных выражений стоит уточнить смысл фразы «при всех допустимых значениях входящих в них переменных». Она подразумевает все такие значения переменных, при которых одновременно имеют смысл оба тождественно равных выражения. Эту мысль разъясним в следующем пункте, рассмотрев примеры.

Определение тождественно равных выражений в учебнике Мордковича А. Г. дается немного иначе:

Тождественно равные выражения – это выражения, стоящие в левой и правой частях тождества.

По смыслу это и предыдущее определения совпадают.

Примеры тождественно равных выражений

Введенные в предыдущем пункте определения позволяют привести примеры тождественно равных выражений.

Однако области допустимых значений переменных в выражениях могут отличаться. Для примера возьмем выражения x−1 и Что значит торжественно равно. Областью допустимых значений переменной x в выражении x−1 является все множество действительных чисел, а ОДЗ переменной x в выражении Что значит торжественно равносоставляют все действительные числа, кроме нуля (иначе будет нуль в знаменателе, а деление на нуль не определено). «Общей» областью допустимых значений переменной x для обоих выражений является пересечение ОДЗ переменной x в каждом из этих выражений в отдельности.

Особую ценность имеет замена одного выражения другим, тождественно равным ему. Такая замена называется тождественным преобразованием выражения, эта тема в силу своей важности заслуживают детального рассмотрения в отдельной статье.

Источник

Тождественно равные выражения: определение, примеры

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны ( 6 и 6 ).

Но область допустимого значения в одном выражении может отличаться от области другого.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Источник

Тождественные преобразования выражений

п.1. Соответственные значения

Рассмотрим два выражения с переменными:

Вычислим их значения при x=2:

Числа 16 и 2 называются соответственными значениями выражений f(x)и g(x) при одинаковом значении x=2. В данном случае соответственные значения не равны. Теперь подставим x=3:

Соответственные значения равны.

Соответственные значения двух выражений, содержащих одни и те же переменные – это числовые значения этих выражений, полученные при подстановке одинаковых значений переменных.

Соответственные значения могут быть:

п.2. Область допустимых значений

Ограничения на ОДЗ определяются видом выражения:

Тождество – формула, в которой два тождественных выражения соединены знаком равенства.

Согласно определению, тождество – это равенство, которое является истинным при всех допустимых значениях переменных, входящих в него.

Тождествами также принято считать истинные числовые равенства.

Разница между тождеством и уравнением заключается в том, что тождество является истинным при всех допустимых значениях переменных, а уравнения – только для одного или нескольких значений переменных из ОДЗ.

Тождественное преобразование выражений – это замена одного выражения другим, тождественно ему равным.

Для доказательства (или опровержения) тождеств используют следующие алгоритмы.

Алгоритм доказательства, что равенство является тождеством

1. Выполнить тождественные преобразования одной или обеих частей равенства.

2. Сравнить полученные слева и справа алгебраические выражения. Если они одинаковы, то равенство является тождеством.

Если выражения неодинаковы, продолжить тождественные преобразования или перейти к доказательству того, что равенство не является тождеством.

Алгоритм доказательства, что равенство не является тождеством

Найти хотя бы одно значение переменной, при котором соответственные значения выражений слева и справа неравны.

п.4. Примеры

Пример 1. Докажите тождество 3(x+1)-2(x-1)-x=5(x+1)-5x

● Тождественные преобразования левой части:

Тождественные преобразования правой части:

Получаем: 5=5. Равенство является тождеством.

Что и требовалось доказать. ○

Пример 2. Тождественны ли выражения 1-(1-(1-b)) и 1-b?

Тождественные преобразования левой части:

Получаем: 1-b=1-b. Выражения тождественны.

Пример 3. Верно ли тождество |x|+1=|x+1|?

Найдем соответственные значения левой и правой части при x=-1.

Равенство не является тождеством.

Пример 4. Является ли тождеством равенство |a+b|=|a|+|b|?

Найдем соответственные значения левой и правой части при a=-1, b=1.

Источник

Тождество

Тема урока: § 4. Тождество.

Тождественные выражения

Сравним значения выражений \( 2x+3x^<2>\) и \( 5x^<3>\) при некоторых значениях переменной \( x.\) При \( x=2\) значение первого выражения \( 16,\) а второго \( 40.\) Числа \( 16\) и \( 40\) — соответственные значения выражений: \( 2x+3x^<2>\) и \( 5x^<3>.\) Некоторые пары соответственных значений этих выражений показаны в таблице:

Легко заметить, что не при всех значениях переменной \( x\) значения выражений \( 2x+3x^<2>\) и \( 5x^<3>\) равны, а значит нельзя сказать, что выражения тождественно равны.

Что такое тождество?

Выражения \( x+5\) и \( 5+x\) тождественно равны, поэтому равенство \( x+5=5+x\) верно при любых значениях \( x.\) Такое равенство называют тождеством.

Определение:
Тождеством называется такое равенство двух выражений, которое верно при любых значениях переменных.

Примеры тождеств

Верное числовое равенство также называют тождеством.

Тождественные преобразования выражений

Рассмотрим выражения \( x(y+7)\) и \( xy+7x.\) Вычислим их значения при \( x=9\) и \( y=-2\)

Мы видим что при \( x=9\) и \( y=-2\) соответственные значения выражений \( x(y+7)\) и \( xy+7x\) равны. Из распределительного и переместительного свойств умножения следует, что соответственные значения этих выражений равны при любых значениях переменных. О таких выражениях говорят, что они тождественно равны.

При решении уравнений, вычислении значений выражений и ряде других случаев одни выражения заменяют другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами. Мы уже встречались с тождественными преобразованиями выражений. К ним относятся, например, приведение подобных слагаемых, раскрытие скобок.

Пример 1. Приведем подобные слагаемые в сумме \(5x+2x-3x.\)

Чтобы привести подобные слагаемые, надо, как известно, сложить их коэффициенты и результат умножить на общую буквенную часть.

Пример 2. Раскроем скобки выражения \(2a+(b-3c).\)

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак “плюс”: если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки.

Пример 3. Раскроем скобки в выражении \(a-(4b-c).\)

Применим правило раскрытия скобок, перед которыми стоит знак “минус”: если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключенного в скобки.

Доказательство тождеств

Если в выражении \(\textcolor<#ed5fa6><5(b-c)-3c>\) раскрыть скобки, а затем привести подобные слагаемые, то получится тождественно равное ему выражение \(\textcolor<#ed5fa6><5b-8c.>\)

верно при любых значениях переменных. Такие равенства называют тождественными.

Свойства действий над числами также являются тождествами, приведем некоторые из них:

Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений.

\[\small\begin <2>7(2+b)-(14-b)= \\ 14+7b-14+b= \\ 8b \end\] В результате тождественных преобразований мы получили правую часть равенства \((1).\) Значит, это равенство есть тождество.

Левая и правая части равенства \((2)\) тождественно равны одному и тому же выражению. Поэтому они тождественно равны между собой. Значит, равенство \((2)\) — тождество.

Не всякое равенство есть тождество. Так, равенство \(x+2=2x\) не является тождеством. Действительно, если бы это равенство было тождеством, то оно было бы верным при всех значениях \(x.\) Однако, например, при \(x=1\) это равенство не является верным. Значит, оно не является тождеством.

Задачи для самостоятельного решения

№1. Являются ли выражения тождественно равными:

Первые два выражения тождественно равны. Т.е. равны при любых значениях переменной \(\footnotesize c. \)

Тождество, т.к. \(\footnotesize (x-x)a=0\cdot a=0 \)

Пятая пара выражений не будет являться тождеством. Предположим обратное:

Видно что равенство верно при \(\footnotesize x=y,\) но если \(\footnotesize x\) и \(\footnotesize y\) отличны друг от друга, то равенства достигаться не будет.

Тождество. Рассмотрим первое выражение

Видно, что первое выражение в точности является вторым.

№2. Упростите выражение, используя переместительное и сочетательное
свойства умножения:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *