Что значит сверхновая звезда
Сверхновая звезда
История наблюдений за сверхновыми звездами
Различные цивилизации регистрировали сверхновые задолго до изобретения телескопа. Самая старая зарегистрированная сверхновая – RCW 86, которую китайские астрономы видели в 185 году нашей эры. Их записи показывают, что эта звезда оставалась на небе в течение 8 месяцев. До начала 17 века (когда появились телескопы) было зафиксировано всего 7 сверхновых.
Крабовидная туманность как остаток сверхновой SN 1054
В современную эпоху одной из наиболее известных сверхновых была SN 1987A 1987 года рождения, которая до сих пор изучается астрономами. Они могут видеть, как развивается сверхновая в первые несколько десятилетий после взрыва.
Звездная смерть
В среднем сверхновая будет возникать примерно раз в 50 лет в галактике размером с Млечный путь. Иными словами, где-то во Вселенной каждую секунду или около того взрывается звезда, и некоторые из них находятся не слишком далеко от Земли.
То, как именно умирает звезда, отчасти зависит от ее массы. Нашему Солнцу, например, не хватает массы, чтобы взорваться как сверхновая. Вместо этого, через пару миллиардов лет, оно раздуется в красного гиганта, поглотит ближайшие планеты, а потом превратится в белого карлика. Но при правильном количестве массы звезда может сгореть в огненном взрыве.
Классификация сверхновых
Звезда может стать сверхновой одним из двух способов:
Тип I
Они происходят из двойных звездных систем, в которых углеродно-кислородный белый карлик притягивает к себе материю от своего компаньона (аккреция). При таком сценарии на белом карлике скапливается столько массы, что его ядро достигает критической плотности 2 х 10 9 г/см³. Этого достаточно, чтобы привести к неконтролируемому слиянию углерода и кислорода, что приведет к детонации звезды.
Тип II
Чтобы звезда взорвалась как сверхновая второго типа, она должна быть в несколько раз массивнее Солнца (по оценкам, от 8 до 15 солнечных масс). Как и у Солнца, у неё в конечном итоге закончится водород, а затем гелиевое топливо в её ядре. Однако у такой звезды будет достаточно массы и давления, чтобы плавить углерод. Вот что происходит дальше:
То, что осталось – сверхплотный объект, называемый нейтронной звездой. Это объект размером с город, который может иметь массы больше нашего Солнца.
Звезды, намного более массивные, чем Солнце (около 20-30 солнечных масс), не могут взорваться как сверхновые, считают астрономы. Вместо этого они коллапсируют, образуя черные дыры.
В 2018 года учёными были озвучены данные о возможном открытии в ходе своих наблюдений нового, до сих пор неизученного, третьего типа сверхновых. Во время этих наблюдений, были зафиксированы 72 кратковременные вспышки с температурой от 10 до 30 тыс.°C и размерами от нескольких единиц до нескольких сотен а. е. Основная особенность этих космических событий заключается в их относительной кратковременности — всего несколько недель, а не несколько месяцев как у обычных сверхновых.
Как умирают самые массивные звёзды: сверхновая, гиперновая или прямой коллапс?
Иллюстрация процесса взрыва сверхновой, наблюдаемой с Земли в XVII веке в созвездии Кассиопея. Окружающий её материал и постоянное испускание электромагнитного излучения сыграли свою роль в непрерывной подсветке остатков звезды
Создайте достаточно массивную звезду, и она не закончит свои дни тихонечко — так, как это предстоит нашему Солнцу, которое сначала будет плавно гореть миллиарды и миллиарды лет, а затем сожмётся до белого карлика. Вместо этого её ядро схлопнется, и запустит неконтролируемую реакцию синтеза, которая разметает внешние слои звезды во взрыве сверхновой, а внутренние части сожмёт в нейтронную звезду или чёрную дыру. По крайней мере, так принято считать. Но если вы возьмёте достаточно массивную звезду, сверхновой может и не получиться. Вместо этого есть другая возможность – прямое схлопывание, в котором вся звезда просто исчезает, превращаясь в чёрную дыру. А ещё одна возможность известна, как гиперновая — она гораздо более энергетическая и яркая, чем сверхновая, и не оставляет за собой остатков ядра. Каким же образом закончат свою жизнь самые массивные звёзды? Вот, что говорит об этом наука.
Туманность из остатков сверхновой W49B, всё ещё видимая в рентгеновском диапазоне, а также на радио- и инфракрасных волнах. Звезда должна превышать Солнце по массе хотя бы в 8-10 раз, чтобы породить сверхновую и создать необходимые для появления во Вселенной таких планет, как Земля, тяжёлые элементы.
Ультрамассивная звезда WR 124 (звезда класса Вольфа-Райе) с окружающей её туманностью – одна из тысяч звёзд Млечного Пути, способная стать следующей сверхновой. Она также гораздо больше и массивнее тех звёзд, что можно создать во Вселенной, содержащей лишь водород и гелий, и уже может находиться на этапе сжигания углерода.
Если звезда будет настолько массивной, то её ждёт настоящий космический фейерверк. В отличие от солнцеподобных звёзд, нежно срывающих свои верхние слои, из которых формируется планетарная туманность, и сжимающихся до белого карлика, богатого углеродом и кислородом, или до красного карлика, который никогда не достигнет этапа сжигания гелия, и просто сожмётся до богатого гелием белого карлика, наиболее массивным звёздам уготован настоящий катаклизм. Чаще всего, особенно у звёзд с не самой большой массой (≈ 20 солнечных масс и меньше), температура ядра продолжает повышаться, пока процесс синтеза переходит на более тяжёлые элементы: от углерода к кислороду и/или неону, и затем далее, по периодической таблице, к магнию, кремнию, сере, приходя в итоге к железу, кобальту и никелю. Синтез дальнейших элементов потребовал бы больше энергии, чем выделяется при реакции, поэтому ядро схлопывается и появляется сверхновая.
Анатомия сверхмассивной звезды в течение её жизни, заканчивающейся сверхновой II типа
Это очень яркий и красочный конец, настигающий множество массивных звёзд во Вселенной. Из всех появившихся в ней звёзд лишь 1% обретают достаточную массу, чтобы дойти до такого состояния. При повышении массы количество звёзд, достигших её, уменьшается. Порядка 80% всех звёзд во Вселенной – красные карлики; масса 40% их них не превышает массы Солнца. При этом Солнце массивнее 95% звёзд во Вселенной. В ночном небе полно очень ярких звёзд: тех, что легче всего увидеть человеку. Но за порогом нижнего ограничения для появления сверхновой существуют звёзды, превышающие Солнце по массе в десятки и даже сотни раз. Они очень редки, но весьма важны для космоса – всё потому, что массивные звёзды могут закончить своё существование не только в виде сверхновой.
Туманность Пузырь находится на задворках останков сверхновой, появившейся тысячи лет назад. Если удалённые сверхновые находятся в более пыльном окружении, чем их современные двойники, это потребует коррекции нашего сегодняшнего понимания тёмной энергии
Во-первых, у многих массивных звёзд имеются истекающие потоки и выброшенный наружу материал. Со временем, когда они приближаются либо к концу своей жизни, либо к концу одного из этапов синтеза, что-то заставляет ядро на короткое время сжаться, из-за чего оно разогревается. Когда ядро становится горячее, скорость всех типов ядерных реакций увеличивается, что ведёт к быстрому увеличению количества энергии, создаваемому в ядре звезды. Это увеличение энергии может сбрасывать большое количество массы, порождая явление, известное, как псевдосверхновая: происходит вспышка ярче любой нормальной звезды, и теряется масса в количестве до десяти солнечных. Звезда Эта Киля (ниже) стала псевдосверхновой в XIX веке, но внутри созданной ею туманности она всё ещё горит, ожидая финальной участи.
Псевдосверхновая XIX века явила себя в виде гигантского взрыва, выбросив материала на несколько солнц в межзвёздное пространство от Эты Киля. Такие звёзды большой массы в богатых металлами галактиках (как, например, наша), выбрасывают существенную долю своей массы, чем отличаются от звёзд в меньших по размеру галактиках, содержащих меньше металлов
Так какова же конечная судьба звёзд, массой более чем в 20 раз превышающих наше Солнце? У них есть три возможности, и мы ещё не полностью уверены в том, какие именно условия приводят к развитию каждой из трёх. Одна из них – сверхновая, которые мы уже обсудили. Любая ультрамассивная звезда, теряющая достаточно много своей массы, может превратиться в сверхновую, если её масса внезапно попадёт в правильные пределы. Но существуют ещё два промежутка масс – и опять-таки, мы точно не знаем, какие именно это массы – позволяющие произойти двум другим событиям. Оба этих события определённо существуют – мы уже их наблюдали.
Фотографии в видимом и близком к инфракрасному свете с Хаббла демонстрируют массивную звезду, примерно в 25 раз превышающую Солнце по массе, внезапно исчезнувшую, и не оставившую ни сверхновой, ни какого-то другого объяснения. Единственным разумным объяснением будет прямой коллапс.
Чёрные дыры прямого коллапса. Когда звезда превращается в сверхновую, её ядро схлопывается, и может стать либо нейтронной звездой, либо чёрной дырой – в зависимости от массы. Но только в прошлом году, впервые, астрономы наблюдали, как звезда массой в 25 солнечных просто исчезла. Звёзды не исчезают бесследно, но тому, что могло произойти, существует физическое объяснение: ядро звезды прекратило создавать достаточное давление излучения, уравновешивавшее гравитационное сжатие. Если центральный регион становится достаточно плотным, то есть, если достаточно большая масса оказывается сжатой в достаточно малый объём, формируется горизонт событий и возникает чёрная дыра. А после появления чёрной дыры всё остальное просто втягивается внутрь.
Одно из множества скоплений в этом регионе подсвечивается массивными, короткоживущими голубыми звёздами. Всего за 10 миллионов лет большая часть из наиболее массивных звёзд взорвётся, став сверхновыми II типа – или просто испытает прямой коллапс
Теоретическую возможность прямого коллапса предсказывали для очень массивных звёзд, более 200-250 солнечных масс. Но недавнее исчезновение звезды такой относительно малой массы поставило теорию под вопрос. Возможно, мы не так хорошо понимаем внутренние процессы звёздных ядер, как считали, и, возможно, у звезды есть несколько способов просто схлопнуться целиком и исчезнуть, не сбрасывая какого-то ощутимого количества массы. В таком случае формирование чёрных дыр через прямой коллапс может быть гораздо более частым явлением, чем считалось, и это может быть весьма удобным для Вселенной способом создания сверхмассивных чёрных дыр на самых ранних стадиях развития. Но существует и другой итог, совершенно противоположный: световое шоу, гораздо более красочное, чем сверхновая.
При определённых условиях звезда может взорваться так, что не оставит ничего после себя!
Взрыв гиперновой. Также известен, как сверхъяркая сверхновая. Такие события бывают гораздо более яркими и дают совсем другие световые кривые (последовательность повышения и понижения яркости), чем любые сверхновые. Ведущее объяснение явления известно, как «парно-нестабильная сверхновая». Когда большая масса – в сотни, тысячи и даже многие миллионы раз больше массы всей нашей планеты – схлопывается в небольшой объём, выделяется огромное количество энергии. Теоретически, если звезда будет достаточно массивной, порядка 100 солнечных масс, выделяемая ею энергия окажется такой большой, что отдельные фотоны могут начать превращаться в электрон-позитронные пары. С электронами всё ясно, а вот позитроны – это их двойники из антиматерии, и у них есть свои особенности.
На диаграмме показан процесс производства пар, который, как считают астрономы, привёл к появлению гиперновой SN 2006gy. При появлении фотонов достаточно высокой энергии появятся и электрон-позитронные пары, из-за чего упадёт давление и начнётся неуправляемая реакция, уничтожающая звезду
Это значит, что для сверхмассивной звезды есть четыре варианта развития событий:
При изучении очень массивной звезды появляется искушение предположить, что она станет сверхновой, после чего останется чёрная дыра или нейтронная звезда. Но на самом деле есть ещё два возможных варианта развитии событий, которые уже наблюдали, и которые происходят довольно часто по космическим меркам. Учёные всё ещё работают над пониманием того, когда и при каких условиях происходит каждое из этих событий, но они на самом деле происходят. В следующий раз, рассматривая звезду, во много раз превосходящую Солнце по массе и размеру, не думайте, что сверхновая станет неизбежным итогом. В таких объектах остаётся ещё много жизни, и много вариантов их гибели. Мы знаем, что наша наблюдаемая Вселенная началась со взрыва. В случае наиболее массивных звёзд мы пока ещё не уверены, закончат ли они свою жизнь взрывом, уничтожив себя целиком, или же тихим коллапсом, полностью сжавшись в гравитационную бездну пустоты.
Сверхновые звезды и их яркие вспышки
На самом деле, сверхновые звезды это светила, которые вспыхивает и в это время их яркость резко увеличивается, а затем медленно затухает. Только представьте, их блеск может повышаться от 10 до 20 звёздных величин.
А вот вспышка сверхновой звезды представляет само явление внезапного увеличения и постепенного уменьшения звёздной яркости.
Как выяснилось, такое событие происходит на конечной стадии эволюции некоторых объектов в результате катаклизма. Причем в межзвёздное пространство выделяется огромное количество энергии.
SN 1987A сверхновая типа II-P
Как получаются новые сверхновые звезды
Какая звезда превращается в сверхновую?
Кроме того, при спектральном анализе наблюдается смещение линии кремния. Что показывает на происходящие во время выброса ядерные реакции.
Итак, возникает предположение о том, что в прошлом сверхновая звезда была карликом. Вероятнее всего, белым углеродно-кислородным представителем.
Типы сверхновых звезд
Стоит отметить, что их обозначение начинается с вида (SN) и года открытия. А оканчивается буквами, которые указывают на порядковый номер объекта в данном году. К примеру, по времени их сначала именуют от А до Z, затем используют аа, ab, ac и др.
Разумеется, представители одного вида тел никогда не могут быть абсолютно идентичными. Они отличаются друг от друга. Главным образом, различается их светимость, природа происхождения, то есть образование.
Итак, выделяют два вида:
Что интересно, в их спектре нет водорода. По этому показателю, основываясь на состав, их делят на подтипы Ia, Ib и Ic.
Сверхновая типа Ib SN 2008D
К тому же, период пика яркости длится примерно два или три дня. Но отмечается высокий уровень блеска.
II тип: гигант или сверхгигант большой массивности взрывается и его ядро коллапсирует. Его элементы очень быстро разлетаются в разные стороны.
Правда, в таких объектах в спектре наблюдаются линии водорода. Также группируются на подтипы: II-L, II-P, IIb и IIn.
Кроме того, второму типу свойственно более продолжительное увеличение яркости. Хотя она ниже и быстрее уменьшается в отличие от первого вида.
Интересные факты про сверхновые звезды
Что интересно, их обнаруживают уже после вспышки. В то время, когда выделенная ими энергия, то есть излучение, достигнет земной атмосферы. Как раз тогда, её можно наблюдать.
Собственно, поэтому долгое время объекты типа сверхновых звезд были непонятными и таинственными.
Рождение сверхновой звезды
Что остается на месте вспышки сверхновой звезды
Между прочим, после взрыва остаётся образование из газа и пыли, а также следы веществ, участвующих в жизни космического тела. Причем то, что сохранилось, так и называется-остаток сверхновой.
Иначе говоря, остаток сверхновой это туманности, которые сформировались после того, как взорвалась звезда и превратилась в сверхновую. Поскольку оболочка разрывается, её частицы разлетаются, то образуется ударная волна. Которая, в свою очередь, также быстро расширяется и из неё получается газопылевая область. Она, помимо всего прочего, содержит звёздный материал и вещества из космического пространства, объединённого этой волной.
Конечно, остаток также, как и сама вспышка, наблюдается спустя какое-то время. Иногда лишь по прошествии сотни лет.
Сверхновые звезды и их примеры
Можно выделить несколько наиболее известных представителей: SN 1572 (её также называют звездой Тихо Браге, так как он дал её описание), SN 1604, SN 1987А и SN 1993J.
К примеру, среди данного вида светил отмечают ярчайшую за прошлый век SN 1987А, а лидером нынешнего столетия пока выступает SN 2006gy.
Кстати, известная Крабовидная туманность является остатком SN1054.
Как вы считаете, в чём состоит важная роль сверхновых звезд?
По правде говоря, они играют важную роль в химическом развитии галактик и всей Вселенной.
Не стоит забывать, что всю свою жизнь, а это тысячи лет, внутри светила происходят ядерные реакции. За это время в нём накапливаются продукты термоядерного синтеза.
Сейчас нам известно, что когда взрывается звёздный объект, в пространство выделяется вещество и энергия. То есть, всё, что было накоплено, как бы, растворяется вокруг. В результате происходит обогащение области на химические элементы. Что, собственно, ведёт к эволюции нашей Вселенной.
Космосмическое пространство
Наконец, значение максимум светимости светила SN можно применять как стандартную свечу. То есть рассчитывать расстояния между космическими объектами. Более того, сейчас благодаря новейшим телескопам стало возможно наблюдать сверхновые звезды соседних галактик. А это, бесспорно, большой прорыв в изучении и исследовании Вселенной.
Что же такое загадочная сверхновая звезда?
В ночном небе вдруг вспыхивает ослепительно яркая звезда — ее не было всего несколько часов назад, но сейчас она горит как маяк.
Сверхновые могут кратковременно затмевать целые галактики и излучать больше энергии, чем наше Солнце выработает за всю свою жизнь. Они также являются основным источником тяжелых элементов во Вселенной. Согласно НАСА, сверхновые являются «самым большим взрывом, который может произойти в космосе».
История наблюдений сверхновых
Различные цивилизации описывали сверхновые еще задолго до того, как был изобретен телескоп. Самая ранняя зарегистрированная сверхновая — RCW 86. Китайские астрономы наблюдали ее в 185 году нашей эры. Их записи показывают, что эта «новая звезда» оставалась на небе в течение восьми месяцев.
До начала 17 века, до того как стали доступны телескопы, по данным Британской энциклопедии было зарегистрировано семь сверхновых звезд.
Термин «сверхновая» не использовался до 1930-х годов. Первым его использовали Уолтер Бааде и Фриц Цвикки из Обсерватории Маунт-Вильсон, в связи со взрывоподобным событием, которое они наблюдали, названным S Andromedae (также известным как SN 1885A). Это событие произошло в галактике Андромеда. Они предположили, что сверхновые возникают, когда обычные звезды сталкиваются с нейтронными.
Одна из самых известных сверхновых — SN 1987A. Это случилось в 1987 году, и это событие все еще изучается астрономами, потому что они могут наблюдать, как сверхновая эволюционирует в первые несколько десятилетий после взрыва.
Смерть звезды
В среднем, сверхновая будет происходить примерно раз в 50 лет в галактике размером с Млечный Путь. Иными словами, звезда взрывается каждую секунду или близко в этому где-то во Вселенной, и поэтому многие из них находятся очень далеко от Земли. Около 10 миллионов лет назад кластер сверхновых создал «местный пузырь», размерами в 300 световых лет, область газа в межзвездной среде, которая окружает Солнечную систему.
Звезда может стать сверхновой в одном из двух случаях:
Сверхновые типа II
Давайте сначала рассмотрим более захватывающий тип сверхновой — II. Для того, чтобы звезда взорвалась как сверхновая II типа, она должна быть в несколько раз более массивной, чем Солнце (оценки говорят о массах от 8 до 15 солнечных). Подобно Солнцу, в ней будет гореть водород, а затем гелий. У нее также будет достаточно массы и давления, чтобы синтезировать углерод. Вот что будет дальше:
На месте взрыва остается сверхплотный объект, называемый нейтронной звездой, размером с город, который может содержать массу Солнца в небольшом пространстве.
Существуют подкатегории сверхновых типа II, классифицированные по их кривым блеска. Свет сверхновых типа II-L неуклонно снижается после взрыва, в то время как свет типа II-P остается устойчивым на некоторое время прежде, чем уменьшиться.Оба типа имеют линию водорода в спектрах.
Астрономы считают, что звезды, гораздо более массивные, чем Солнце (около 20-30 солнечных масс), не могут взорваться как сверхновая. Вместо этого они разрушаются, образуя черные дыры.
Сверхновые типа I
У сверхновых типа I отсутствует линия водорода в их спектрах.
Астрономы используют сверхновые типа Ia для измерения космических расстояний, потому что, как считается, они пылают с одинаковой яркостью на своих пиках.
Сверхновые типа Ib и Ic также претерпевают крах ядра, как и сверхновые типа II, но теряют при этом большую часть своих внешних оболочек из водорода.
История сверхновых – фейерверков нашей Галактики!
Когда я убедил себя, что ни одна звезда подобного типа ранее не сияла, я пришёл в такое недоумение из-за неправдоподобности случившегося, что стал сомневаться в собственных глазах.
— Тихо Браге
Когда мы смотрим на галактики, разбросанные по Вселенной, мы видим, что периодически – примерно раз в столетие – яркая звезда так сильно разгорается, что на некоторое время может затмить всю остальную галактику!
Это, конечно же, не яркость звезды увеличивается – это самые атомы, составляющие звезду, вовлекаются в неконтролируемую реакцию ядерного синтеза, и приводят к печально известному явлению по имени сверхновая!
То же самое было и с предыдущей, SN 1572.
Не представляющие ничего особенного на вид, сверхгорячие остатки взорвавшейся звезды разбросало в космос с умопомрачительными скоростями в тысячи километров в секунду, и они были настолько горячими, что испускали рентгеновское излучение! Ещё там есть пыль, распространённая по всей галактике, и она нагревается от взрыва сверхновой – именно это и светится в инфракрасном диапазоне.
Последняя сверхновая до этого? Придётся вернуться аж до 1181 года, и мы до сих пор не уверены, что нашли её останки. Но мы точно нашли ту, что наблюдали до этого: SN 1054.
Эти остатки, как можно заметить, выглядят совершенно не так, как предыдущие, и тому есть причина: это сверхновая совершенно другого типа! Крабовидная туманность, также известная, как Мессье 1, не была образована слишком массивным белым карликом, а появилась из-за сверхмассивной звезды, сжёгшей всё своё топливо и погибшей в коллапсе ядра, что привело к выбросу материи на десятки солнечных масс!
Коллапс ядра этой звезды создал пульсар. Пульсары – одни из самых удивительных часов Вселенной, их превосходят по точности лишь атомные часы на Земле!
До этого была самая яркая из всех зафиксированных на Земле сверхновых в 1006-м.
К этому моменту вы уже должны сообразить, что когда-то это был белый карлик, а не сверхмассивная звезда. Через 1000 лет пузырь, созданный взрывом, разросся до размеров в несколько световых лет, и если бы наша звезда так рванула, то край пузыря уже был бы на полпути к Альфа Центавра!
Глядя на рентгеновское изображение 2000 лет спустя, можно сказать, что это был белый карлик, а не сверхмассивная звезда.
Но рассматривая эти изображения, я подумал: насколько интересно будет изучить эти остатки только лишь в видимом свете, будто бы фотографии космических фейерверков в ускоренной съёмке? Давайте посмотрим.
Через почти 2000 лет, у остатков сверхновой RCW 86 (от сверхновой 185 года) в видимом диапазоне всё ещё заметен внешний контур пузыря (красное, вверху). Как и у последней стадии фейерверка, это последняя часть, которую будет видно человеческим взглядом (голубое – это рентгеновский газ).
Но, оказывается, тысяча лет мало что меняют.
Сверхновая 1006 еле различима в видимом свете, видна лишь тонкая полоска и очень тусклый газ по внешнему контуру (и конечно, все остальные звёзды!). Но сверхновая 1054, о которой мы говорили, как об остатках сверхмассивной звезды, а не белого карлика, представляет собой совершенно другое.
Помните то великолепное изображение Крабовидной туманности, которое я вам показывал? Это фотография исключительно в видимом свете! Внешние слои газа, богатого самыми лёгкими из тяжёлых элементов – кислородом, углеродом, азотом – создают красивые и контрастные цвета в туманности, когда они перегреваются и разбрызгиваются по межзвёздному пространству.
Но фотографии, сделанные на множестве других длин волн, могут рассказать нам гораздо больше, как вы можете видеть — от ярких источников рентгеновского излучения в ядре звёзд до тёплой пыли, наблюдаемой в инфракрасные телескопы. В случае Крабовидной туманности, видимый свет, тем не менее, много о чём может рассказать, благодаря большому количеству газа и пыли, а также энергии, вышедшей вместе с ними.
Сверхновая 1572, у которой почти не было газа и пыли, представляет собой другой случай.
Ведь должны же были найти остатки солнцеподобной звезды, взорванной её компаньоном, превратившимся в сверхновую порядка 500 лет назад? Ни следа.
Так что варианты бывают разные, и отличным примером будет сверхновая 1604 года.
Ни полоска, ни пузырь, а лишь небольшой район, где из остатков видно немного светящегося газа.
Не хватает лишь снимков сверхмассивного взрыва, где горячая видимая пыль была сметена. Как бы он выглядел?
С 1604 года у нас в Галактике не случалось сверхновых, видимых с Земли невооружённым глазом. Но в конце 17-го века появилась одна сверхновая, и хотя в оптическом диапазоне её остатки еле видны, она представляет собой самый громкий источник в радиодиапазоне в нашей галактике: Кассиопея А!
Она расположена в 11 000 световых годах от нас, размер её остатков уже занял 10 световых лет в поперечнике — она выросла больше, чем Крабовидная туманность, при этом росла в три раза меньшее время! Раз уж это самый сильный радиоисточник, то там наверно должна быть какая-то фантастическая нейтронная звезда или чёрная дыра.
Но я хотел показать вам фейерверк.
На следующем фото — не визуализация и не симуляция. Несравненный телескоп им. Хаббла сделал отличную фотографию с длинной выдержкой, запечатлевшую видимый свет от остатков сверхновой, который нужно посмотреть, чтобы понять, почему я называю эти взрывы «космическими фейерверками».
Это потрясающе! Если у вас есть время, рекомендую поиграться с крупномасштабной версией фотографии. Я решил показать вам её по частям и прокомментировать наиболее интересные её фрагменты.
Обратимся к пузырю.
Теперь посмотрим на трёхслойную структуру поверх пузыря. Обратите внимание на небольшие «колонны», некоторые регионы, в которых плотность материи выше, чем у других.
А теперь увеличим зеленоватую область.
Надеюсь, вам понравились фейерверки! Слишком много времени прошло с момента появления сверхновой в нашей Галактике. Увидим ли мы новую при нашей жизни? Как заключает граф Монте-Кристо:
Вся человеческая мудрость содержится в двух словах: ждать и надеяться.