Стабильная работа в любых условиях: источники питания SITOP Power
SITOP Power – обширная линейка стабилизированных источников питания от Siemens, предназначенная для работы в самых разных областях промышленности – в химической, машиностроительной, робототехнической и других. Данные источники питания подойдут практически для любых задач благодаря мощному функционалу, широкому диапазону рабочих температур, работе с нестандартными напряжениями и многим другим преимуществам.
Ни для кого не секрет, что оборудование компании Siemens широко применяется на промышленных предприятиях России и ближнего зарубежья и по количеству установок занимает первое место. И это естественно, ведь промышленное оборудование производства Siemens отличается высочайшим качеством, и это доказано временем. Если «мозгом» любой автоматизированной системы управления технологическим процессом (АСУ ТП) является программируемый логический контроллер (ПЛК), то «сердцем» будет источник питания.
Чтобы правильно подобрать источники питания, необходимо понимать принципы работы блоков питания.
Как устроен стабилизированный блок питания
Стабилизированный источник питания – это источник питания, который содержит аналоговую, импульсную или цифровую схему регулирования, благодаря которой поддерживаются постоянные выходные параметры – ток и напряжение при скачках входного напряжения. Также схема обеспечивает защиту от короткого замыкания и перегрузок.
В нестабилизированном источнике питания такая схема отсутствует. Он состоит из входного и выходного фильтров, входного и выходного выпрямителей, генератора импульсов и трансформатора, защищающего нагрузку только от перенапряжений (рисунок 1). Как видно из этого рисунка, выходное напряжение получается неустойчивым. Его параметры очень сильно зависят от качества питающей электросети. Но при этом КПД выше, чем у стабилизированного источника питания, а нагрев ниже, так как нет контура регулирования, который требует дополнительной энергии.
Серия SITOP Power относится к стабилизированным импульсным блокам питания (рисунок 2).
Рис. 1. Структурная схема простейшего блока питания
Рис. 2. Структурная схема стабилизированного блока питания
В таких блоках входное переменное или постоянное напряжение (Uвх) выпрямляется и преобразуется в импульсы высокой частоты. Эти импульсы подаются на первичную обмотку трансформатора. Соответственно, на вторичной обмотке появляются импульсы такой же частоты, но другого напряжения. Это напряжение снова выпрямляется и подается на блок стабилизации, и уже потом – на выход блока питания. Автоматическое регулирование заключается в коррекции номинального (Uвых.ном) и реального (Uвых) выходных напряжений.
Диапазон входных напряжений. Чем больше данный диапазон – тем надежней работа блока питания, например, при повышенном или пониженном напряжении. Линейка SITOP Power имеет очень широкий диапазон – 85…264 В постоянного тока и 400…500 В переменного тока. При этом, номинальное напряжение у однофазных блоков питания выбирается с помощью перемычки – 120 или 220 В.
Допустимое перенапряжение – кратковременный всплеск напряжения, при котором выходной ток (Iвых) все еще равен номинальному току (Iвых.ном). У семейства SITOP Power эта величина равна Uвх*2,3 в течение 1,3 мс.
Допустимый перерыв в питании – исчезновение входного тока (Iвх) до 3 мс, при которой Iвых = Iвых.ном.
Предельный импульсный ток включения. В момент включения блока питания происходит зарядка емкостей входного фильтра. Величина входного тока при этом может превышать номинальный в 3…4 раза. Если ток при запуске установки превышает значение импульсного тока включения, рассчитанный для конкретной модели – необходимо применять ограничитель пускового тока. Его отсутствие в таких случаях может привести к периодическому срабатыванию автоматического выключателя из-за больших пусковых токов.
Ограничитель пускового тока. Он необходим для уменьшения импульсных токов включения емкостей во входных цепях до безопасного уровня. Ограничитель устанавливается в разрыв цепи после автомата и перед одним или несколькими блоками питания и ограничивает их пусковые токи.
Корректор коэффициента мощности (PFC) или компенсатор реактивной мощности предназначен для снижения реактивной мощности, потребляемой блоком питания. Классическая схема выпрямления переменного тока состоит из диодного моста и конденсатора. Проблема в том, что ток заряда конденсатора представляет собой импульс и имеет очень большое значение. Например, сетевой ток импульсного источника питания при 300 Вт и 220 В будет примерно 1 А, импульсный – 4 А. А если источников будет несколько и большей мощности – скорее всего, начнутся проблемы с проводкой, розетками, поступят огромные счета за электричество. Для решения данной проблемы применяют специальный электрический модуль – корректор коэффициента мощности, который уменьшает импульсы. Он располагается между конденсатором и выпрямителем и обрезает амплитуду тока.
Коэффициент мощности – отношение активной мощности (потребляемой источником питания безвозвратно и уходящей в тепло) к полной. То есть, коэффициент мощности – отношение полезной к полученной мощности. Чем он ближе к единице – тем лучше.
КПД. Величина КПД влияет на тепловыделение. Чем выше КПД – тем лучше, так как блок питания выделяет меньше тепла.
Диапазон настройки уровня выходного напряжения. Большинство моделей блоков питания SITOP Power позволяет регулировать величину номинального выходного напряжения. Это позволяет обеспечить электричеством оборудование с нестандартным питанием или компенсировать падение напряжения в распределенных линиях.
Возможность параллельного включения. Параллельное включение блоков питания дает возможность использования «горячего» резервирования или сложения мощностей. Серия SITOP Power поддерживает до двух параллельно включенных источников питания.
Индикация и сигнализация. В основном, используются транзисторные нормально открытые выходы для дистанционного наблюдения за работой блока питания и светодиоды состояния, расположенные непосредственно на приборе.
Основные преимущества
Блоки питания семейства SITOP Power отличают следующие особенности:
1. Нестабилизированные блоки питания – выходное напряжение зависит от тока нагрузки.
Плюсы:
Минусы:
2. Стабилизированные блоки питания – выходное напряжение не зависит от тока нагрузки.
Плюсы:
Минусы:
* КПД существенно меньше, чем у импульсных блоков питания, трансформаторные БП греются, имеют большой размер и вес.
Плюсы:
Минусы:
** Ценовое преимущество импульсных блоков очевидно для достаточно мощных изделий, также благодаря высокому КПД и малым габаритам, у них лучше соотношение цена/качество
Импульсного блока питания на 5000мА вполне достаточно чтобы закрыть все ваши потребности, он подойдет как для мощных устройств, так и для устройств, требующих ток в 300мА.
Тенденции: будущее за импульсными блоками питания. По мере удешевления компонентов импульсных блоков питания, они все больше и больше теснят и маломощные трансформаторные. Пример: зарядные устройства мобильных телефонов сейчас преимущественно импульсные, хотя еще несколько лет назад на таких небольших мощностях использовались трансформаторные блоки питания.
Виды стабилизации в блоках питания для светодиодного освещения от MEAN WELL
Особенностью систем светодиодного (LED) освещения является требование к стабилизации выходных параметров их источников питания. В зависимости от типа драйвера или его наличия от источника питания для LED освещения требуется один из следующих видов стабилизации:
Стабилизация по току – стабилизируемым параметром является выходной ток, при этом выходное напряжение может изменяться в пределах мощности самого источника питания (Рисунок 1). Так как яркость свечения светодиодов напрямую зависит от уровня протекающего тока, то для обеспечения постоянной яркости свечения требуется стабилизация тока. Еще такой источник называют светодиодным драйвером. Система такого типа обладает наименьшей гибкостью, так как проектируется под заданное количество светодиодов, и, при внесении в нее изменений потребуется приобретение другого драйвера. Другой недостаток это отсутствие баланса тока через параллельное соединение цепочек светодиодов и неравномерную яркость их свечения.
Стабилизация по напряжению – стабилизируемым параметром является выходное напряжение, при этом выходной ток может быть любым до максимального значения (Рисунок 2). В ряде светодиодных светильников и светодиодных лент встроены балластные резисторы для ограничения тока через светодиоды, либо применяется интегральная схема драйвера, который задает уровень тока, поэтому от источника питания требуется только обеспечение стабильного уровня выходного напряжения. При стабилизации по напряжению можно проектировать систему светодиодного освещения более гибко, закладывая запас по мощности при выборе источника питания, так как функция управления током светодиодов переносится на отдельный драйвер. Недостатками такой системы освещения является более низкая эффективность за счет падения напряжения на балластных резисторах, и более высокая стоимость системы освещения.
Третьей разновидностью является стабилизация по току и по напряжению, которая сочетает в себе достоинства обоих типов стабилизации выходных параметров блоков питания для светодиодного освещения (Рисунок 3). До достижения уровня максимальной мощности блок питания работает как классический блок питания со стабилизацией по напряжению, и затем переходит в режим стабилизации тока. Это часто применяемый тип стабилизации, так как питание светодиодов осуществляется в щадящем режиме (не допускается превышение тока самим источником питания), что продлевает срок службы светодиодов.
Компания MEAN WELL разработала новые источники питания со стабилизацией по мощности. По мере развития светодиодного освещения – условия размещения, динамическое изменение яркости – стало больше требований к стабильности отдаваемой мощности от источников питания. В драйверах со стабилизацией по мощности (Рисунок 4) есть регулировка выходного тока, позволяющая задавать номинальное значение, при этом выходное напряжение «подстраивается» под текущее потребление мощности, чем достигается постоянная стабильность мощности. То есть, во-первых, перекрывается диапазон мощностей у простых источников питания со стабилизацией по току схожих по выходным параметрам, во-вторых, отсутствует падение мощности источника (и яркости системы светодиодного освещения) при изменении параметров потребления нагрузки. В итоге источники питания со стабилизацией по мощности дают гибкие возможности для проектирования, при этом упрощается выбор подходящей модели за счет меньшего количества моделей.
Наиболее частые области применения драйверов – источников питания со стабилизацией по мощности это освещение теплиц, крупных спортивных сооружений, площадок для выступлений, уличное освещение, подсветка зданий, и другие.
Требуемый тип стабилизации (например, нормированное значение тока или напряжения) указывается в описании параметров светодиодного светильника или ленты.
Для работы бытовой и промышленной техники, от компьютеров и холодильников до станков и автоматизированных узлов сборки, необходима электрическая энергия с подходящими параметрами: напряжением, частотой и силой тока.
Чтобы обеспечить нормальное функционирование — или хотя бы правильное отключение — приборов при выходе из строя сети, к которой они подключены, используются источники вторичного электропитания, или блоки питания. Как они устроены и каких видов бывают, будет рассказано ниже.
НАЗНАЧЕНИЕ УСТРОЙСТВ
Блок питания постоянного тока — это прибор, преобразующий исходные параметры электросети в требуемые для работы подключённых к ней технически сложных устройств. Чаще всего речь идёт о снижении и выпрямлении напряжения — именно оно имеет критическое значение для сохранности оборудования.
Второе назначение блоков питания — обеспечения работы устройств при временном отключении основной сети. Такое оборудование исполняет одновременно функции трансформатора и аккумулятора и при возобновлении электрического питания автоматически подзаряжается от сети.
Наконец, трансформаторные блоки питания могут использоваться и для соединения двух цепей в «опасных» точках — например, в местах с повышенной влажностью, наличием в воздухе проводящих или химически активных частиц и так далее.
Устройство в этом случае необязательно должно быть понижающим — часто коэффициент преобразования равен единице: и на входе, и на выходе вольтметр сохраняется среднее значение в 220 вольт.
Обычно один прибор выполняет сразу несколько функций: это и трансформатор, и аккумулятор, и изолированный «посредник»; чтобы дать пользователю возможность проверять и регулировать выходные параметры электричества, производителя снабжают устройства индикаторами напряжения, силы тока и (или) мощности, тумблерами и плавными переключателями.
Универсального сетевого блока питания не существует: такое устройство было бы крайне сложным в исполнении и ремонте, а кроме того, отличалось бы большой массой и высокой стоимостью.
РАЗНОВИДНОСТИ ПРИБОРОВ
В состав устройств первого типа непременно входят трансформатор, конвертирующий исходное напряжение в более низкое, и выпрямитель, преобразующий переменный ток стандартной частоты (в России — около 50 герц) в постоянный, требуемый для работы бытовой или промышленной техники.
Дополнительными составляющими являются фильтр, предназначенный для нивелирования всплесков и провалов напряжения, стабилизатор, высокочастотный фильтр и защита от коротких замыканий.
Все эти компоненты позволяют получить на выходе идеально ровный сигнал, что особенно важно для чувствительных электроприборов: чем «чище» подаваемый на них ток, тем дольше они могут прослужить.
В импульсных, или инверторных блоках питания происходят более сложные преобразования: сначала переменный ток преобразуется в постоянный, а затем формируются импульсы высокой частоты, подаваемые, через малогабаритный высокочастотный трансформатор, на выпрямитель и фильтр ВЧ, затем выход.
К дополнительным компонентам относятся иные или дублирующие фильтры, защита от короткого замыкания и нулевой нагрузки, а также трансформаторы выходного переменного сигнала в постоянный.
В настоящее время и линейное, и импульсное оборудование оснащено стабилизаторами, позволяющими получить на выходе ровный, без резких скачков, сигнал. Стабилизированный блок питания продлевает срок службы бытовой и промышленной техники, а также, даже без использования дополнительной защиты, снижает риск короткого замыкания в сети.
ХАРАКТЕРИСТИКИ ОБОРУДОВАНИЯ
Мощность измеряется в ваттах или, по сохранившейся традиции, в вольт-амперах. Максимальное значение, которое может выдать устройство на выходе, обязательно указывается в его характеристиках; в идеале оно должно на 15–30% превышать суммарную потребляемую мощность всех подключённых к сети через блок питания приборов.
Например, если для работы первого изделия требуется 15 Вт, второго — 6 Вт, а третьего — 9 Вт, мощность стабилизированного блока питания должна составлять: (15 + 6 + 9)×(1,15…1,30), то есть от 34,5 до 39 ватт. Устройства, выдающие большие значения, использовать можно; меньшие — нет.
У холодильников, насосов и ряда других устройств она может превышать постоянную более чем в пять раз, что необходимо закладывать в расчёты.
Если для запуска первого из перечисленных в примере выше приборов требуется мощность, в три раза превышающая потребляемую в ходе функционирования, расчёты будут выглядеть следующим образом: (15×3 + 6 + 9)×(1,15…1,30), то есть требуемая мощность оборудования должна составлять от 69 до 78 ватт.
Устройство, выдающее только номинальные 60 Вт, может оказаться недостаточно эффективным — или владельцу придётся на время пуска отключать другие два электроприбора.
Поскольку значение напряжения на входе не зависит от воли пользователя и в бытовой сети составляет приблизительно 220 В, с существенными колебаниями в меньшую или большую сторону, значение имеет лишь выходной параметр. Он может быть единственным (например, 12 В) или переключаемым — от 6 до 20 вольт или в любом другом предусмотренном производителем диапазоне.
В отличие от мощности, подбирать выходное напряжение нужно по ближайшему значению, не обязательно в большую сторону. Если для функционирования техники нужно 12,3 В, а в наличии имеются устройства с показателями 12 и 16 вольт, отдать предпочтение следует первому.
Хотя не все приборы требуют стабилизации напряжения, выбирать нужно устройства с этой функцией; они универсальны и подходят для любой техники, в то время как использование блока без стабилизатора может привести к выходу дорогостоящего оборудования из строя.
Выходная сила тока.
Этот параметр прямо связан с мощностью и напряжением, а потому зачастую не указывается. При подборе оборудования по силе тока нужно, как и в случае с мощностью, просуммировать потребляемые подключённой аппаратурой значения и прибавить к результату 15–30%
Например, если для работы первого прибора требуется 2 А, второго — 0,5 А, а третьего — 6 А, блок питания должен выдавать как минимум: (2 + 0,5 + 6)×(1,15…1,30), то есть от 9,8 до 11,1 ампера. По аналогии с ранее приведёнными расчётами нужно учитывать и пусковые значения, часто превышающие рабочие.
С целью упростить подбор оборудования можно руководствоваться эмпирическим правилом: если требуемое значение силы тока менее 5 А, нужно выбирать трансформаторный блок; если более — импульсный.
Коэффициент полезного действия.
Тут всё просто: чем выше КПД, тем эффективнее прибор и тем меньше потери электроэнергии в сети. Высокая стоимость блоков питания с КПД 95…98% со временем окупится экономией на потребляемом токе — а значит, приобретение устройства с максимальным параметром имеет смысл.
Наличие в устройстве блока защиты от перегрузок, полной разрядки, короткого замыкания, перегревания в ходе работы, резких скачков напряжения и повышения силы тока увеличивает стоимость изделия, зато даёт владельцу почти стопроцентную гарантию безопасности.
При выборе устройства следует обращать внимание на наличие регуляторов выходных параметров (плавных или ступенчатых), индикаторов, показывающих входных и выходные параметры тока (шкальных или цифровых), а также работу от сети или в автономном режиме (светодиодных), и возможности ручного разрыва сигнала (обычно реализуется в виде тумблера).
Чем больше информации сможет владелец получить о состоянии блока питания, тем безопаснее будет его работа и тем меньше риск преждевременного выхода из строя, «вылета» сети или короткого замыкания с последующим возгоранием.
Здесь, как и в случае с КПД, всё прозрачно: чем компактнее и легче блок питания, тем он удобнее в эксплуатации — но, как правило, тем больше за него придётся заплатить.
Указанные параметры не являются краеугольными: если условиями работы являются большая мощность и высокий КПД, устройство просто не может быть слишком маленьким, тем более если подразумевается наличие в нём дополнительных функций.
Наиболее дорогими и качественными в отношении выходного сигнала являются промышленные блоки питания; но если пользователю необходимо обеспечить работу компьютера, телевизора и видеопроигрывателя, никакой необходимости в излишних тратах нет. Достаточно найти подходящий по перечисленным выше параметрам прибор — и, сравнив цены, выбрать идеальную модель.
Стабилизированный источник питания для бесперебойной работы электрооборудования.
Предназначение стабилизированного источника питания
На сегодняшний день от источников постоянного тока питается практически вся электронная аппаратура. Гальванические батареи или аккумуляторы применяются для мобильной аппаратуры. Такой аппаратуры у каждого из нас предостаточно (это фотоаппараты, мобильные телефоны, планшеты и другие разнообразные измерительные приборы).
Музыкальные центры, компьютеры, телевизоры (вся стационарная электроника) с помощью блоков питания питаются от сети переменного тока. В данном случае уже нельзя обойтись лишь малогабаритными аккумуляторами или батарейками. Здесь необходим стабилизационный источник питания, который предназначен для защиты.
Стабилизированный источник http://darxton.ru/catalog_section/impulsnye-istochniki-bloki-pitaniya/ питания обладают широкими пределами регулирования выходного напряжения, надежной защитой от перегревания тока нагрузки, для них характерно высокая нагрузочная способность. Низкий коэффициент пульсации при этом состоит из главных элементов (выпрямительного моста, понижающего трансформатора, сглаживающих фильтров).
Какими должны быть источники питания
Во всех источниках питания постоянное выходное напряжение должно регулироваться в некоторых пределах (0,25В), не более 10А должен составлять ток нагрузки. Во время нестабильного напряжения в сети 20%, выходное напряжение должно быть не больше 0,3%. Защита должна срабатывать от 7А и выше, а если нужно число ампер сделать большим, то это можно установить по желанию заказчика.
О некоторых видах источников питания
Иногда бывает, что блок питания может выдавать несколько напряжений, их часто называют многоканальными. Например, это компьютерный блок питания, который необходим для защиты оборудования от скачков напряжения.
Лабораторные блоки питания предназначены для использования во время опытов на специальной макетной плате. Блок должен обладать достаточными возможностями, потому что его часто применяют для наладки разнообразных конструкций.
В последнее время производят блоки питания, рассчитанные на одно фиксированное напряжение. Такой блок надежно защищает оборудование от повышения выходного напряжения. Данная защита по своей структуре не сложна, для ее реализации необходимо лишь несколько деталей. Чаще всего ее можно встретить в некоторых радиолюбительских конструкциях.