Что значит стабилизация видео
Оптическая или цифровая: какая стабилизация лучше и зачем она вообще нужна
Чтобы изображения получались резкими даже при съемке «с рук», в гаджетах используют системы стабилизации. Но не все они одинаковы: рассказываем, какие из них лучше.
Зачем вообще нужна стабилизация изображения в смартфонах и камерах? Для получения четкого снимка и объект, и камера должны быть жестко зафиксированы. И если с объектом проблем не возникает (конечно, если это не ребенок или активное животное, которым правила съемки не объяснишь), то с самим гаджетом сложнее.
Если снимать в хорошую погоду с небольшого расстояния, выдержка на аппарате будет довольно короткой.
А если нет возможности использовать короткую выдержку? Например, вы снимаете в облачный день и света не так много. Хорошо, когда есть штатив или хотя бы неподвижный элемент, куда можно поставить гаджет (например, гранитный парапет). Но если все же приходится снимать с рук, приходит на выручку система стабилизации. Ее задача — компенсировать дрожания вашей руки.
Стабилизация: внешняя и встроенная
Стабилизация делится на активную и пассивную. К первой относятся всевозможные подвесы, стедикамы и другие устройства, стабилизирующие камеру в пространстве. Подобные аксессуары в наши дни применяются не только профессионалами, но и всеми подряд — в продаже достаточно стабилизаторов от множества брендов, рассчитанных на самый разный кошелек. Другое дело, что всем этим нужно уметь пользоваться, а пассивная стабилизация никаких особых знаний не требует.
Пассивная стабилизация уже встроена в саму камеру и работает либо по принципу оптической стабилизации изображения (Optical Image Stabilizer, OIS), либо по принципу цифровой стабилизации изображения (Electronic Image Stabilizer или Digital Image Stabilizer, EIS или DIS). Оба решения используются в современных смартфонах, но чем они отличаются и какое из них лучше?
Оптическая стабилизация: чистая механика
Общая задача стабилизаторов — сделать итоговое изображение четким, но добиваются этого системы разным способом. OIS, появившаяся раньше, представляет собой целый комплекс: стабилизирующий элемент объектива, способный двигаться по вертикали и горизонтали, с помощью электроприводов «маневрирует» по командам от гироскопических датчиков ради того, чтобы во время экспозиции фотоаппарата полностью компенсировать движения камеры в проекции изображения на пленке или матрице цифровых фотоаппаратов.
Позднее появилась система, в которой движения компенсируются уже с помощью подвижной матрицы внутри корпуса камеры — это позволило использовать сменные объективы, хотя и ценой чуть меньшей эффективности. Но заметить это можно только в очень сложных условиях съемки.
Оптические системы стабилизации со временем появились и в смартфонах. Не так давно мы тестировали vivo X60 Pro, где использована именно такая система. Можно посмотреть на видео, как она работает.
Цифровая стабилизация: программное решение
Цифровая стабилизация также борется с нечетким изображением, но делает это без механической «помощи». При EIS часть пикселей матрицы камеры не формирует картинку, а работает в качестве резерва — при движении процессор понимает, что изображение будет смазанным и использует эти «запасные» пиксели, чтобы компенсировать потери. В итоге кадры получаются четкими, но зачастую менее качественными, чем то же изображение, выполненной с помощью устройства с оптической стабилизацией. При этом реализация подобного решения требует меньших затрат, а потому цифровая стабилизация часто встречается в бюджетных устройствах.
Флагманские смартфоны обычно имеют комбинированную систему стабилизации, в которой OIS дополняется EIS. Это позволяет добиться максимально качественного изображения, хотя, например, Google в своей линейке Pixel использует только цифровую стабилизацию — софт у компании написан качественный, и он дает возможность делать весьма хорошие кадры. Другое дело — бюджетные устройства, создатели которых экономят на комплектующих и в итоге получается, что сами по себе компоненты камеры не лучшие, к тому же слабое «железо» не позволяет реализовать максимально качественные алгоритмы EIS, так что на выходе получаются фотографии, которые без слез можно разглядывать только на экране этого же смартфона.
Оптическая или цифровая стабилизация: что лучше?
Так что в итоге, какой из вариантов лучше? Однозначно, оптическая. Но реализовать ее не так просто — особенно, в компактных объективах смартфонов. Поэтому такие системы используют, главным образом, в дорогих гаджетах. Например, в большинстве моделей из нашей подборки лучших камерофонов 2021 года.
Цифровая стабилизация — «эконом-вариант». Лучше, чем никакой, но не так эффективная, как оптическая. Такие встречаются, как правило, в смартфонах среднего класса.
Зачем стабилизация нужна в смартфонах и почему ее наличие важно для фотографии и видеозаписи
Зачем стабилизация нужна в смартфонах и почему ее наличие важно для фотографии и видеозаписи
Камера смартфона состоит из множества компонентов, от датчиков и объективов до систем лазерной фокусировки. И все чаще стабилизация изображения становится одной из основополагающих функций камеры.
Стабилизация изображения, как ни странно, важна для стабилизации ваших изображений. Без нее ваши снимки получаются размытыми, а видео выглядят так, будто второсортное кино 80-х. Видите ли, затвор камеры должен быть открытым, чтобы захватывать свет. Пока это происходит, малейшее движение может испортить весь кадр. Это особенно актуально, когда затвор открыт в течение длительного времени, например, при съемке в темноте.
Поскольку в наших смартфонах все чаще появляются HDR и ночные режимы, стабилизация изображения превратилась из роскоши в необходимость. Практически все смартфоны обеспечивают стабилизацию изображения как минимум на одной камере и делают они это разными способами. В этом материале мы расскажем про них.
Оптическая стабилизация изображения (OIS)
OIS — это аппаратное решение, использующее микроэлектромеханический (MEMS) гироскоп для определения движения и соответствующей настройки системы камеры. Например, если вы держите свой смартфон, и ваша рука слегка смещается влево, система OIS заметит это и немного сместит камеру вправо.
Это аппаратное решение не требует обрезки изображения, а это означает, что для захвата фотографии в телефоне используется полное считывание с датчика. В результате вы получите видео с нулевым искажением, поскольку пропадает «эффект желе», возникающий при цифровой стабилизации. OIS также делает видео намного более естественным, так как не применяется цифровая обработка.
Оптическая стабилизация максимально полезна для съемки видео или фотографий. Она особенно хороша в условиях слабого освещения, когда затвор камеры открыт дольше. Из-за отсутствия оптической стабилизации фотографии могут получаться размытыми даже из-за небольшого движения рукой.
При включенном OIS незначительные колебания нивелируются, что позволяет делать более четкие фотографии. То же самое касается телеобъективов, где малейшее дрожание усиливается из-за гораздо более широкого поля зрения.
Электронная стабилизация изображения (EIS)
EIS — это попытка сделать то, что делает OIS, но без физического оборудования. Этот вид стабилизации работает при помощи акселерометра вашего смартфона для обнаружения небольших движений. Программное обеспечение камеры считывает эти движения и выравнивает каждый кадр. Для изображений это особенно важно при съемке HDR и в ночном режиме, когда камера делает несколько снимков за короткий промежуток времени.
При записи видео программа найдет точку высокой контрастности и попытается удержать эту точку в той же части кадра. Более современные EIS используют машинное обучение для обнаружения объекта и, соответственно, его «захвата».
Обычный компромисс с использованием EIS заключается в том, что иногда электроника создает всем известный «эффект желе», делает видео не совсем естественными.
Возможно, самым большим недостатком электронной стабилизации является обрезание изображения. Когда EIS включен, картинка становится немного обрезанной на выходе.
Края изображения с сенсора камеры используются как буферная зона. Стабилизированное изображение можно перемещать в пределах этого поля, сохраняя объект в кадре. Без буферной зоны края изображения обрезались бы более заметно.
Гибридная стабилизация изображения (HIS)
HIS, следуя из названия, представляет собой комбинацию OIS и EIS. Это хорошее комплексное решение. OIS обеспечивает базовую аппаратную стабилизацию, а затем используется EIS для дальнейшего сглаживания видеоматериала.
Благодаря наличию OIS фактор «кропа» EIS не обязательно должен быть высоким. Буфер по краям изображения может быть меньше, что приводит к более тонкому кадрированию и меньшему влиянию на конечный кадр.
Для фото нет никакой пользы от гибридной системы. OIS обеспечит беспроблемную съемку во всех желаемых сценариях. Хотя EIS может быть включен для дополнительной стабилизации с HDR и многократными ночными снимками.
Если вам интересны результаты работы HIS, вот пример Pixel 2 от Google, который был первым флагманом на Android, использующим гибридную систему OIS и EIS:
Если и HIS вам недостаточно, изображения все еще размыты, а видео дергается, то единственным решением данной проблемы будет покупка ручного стабилизатора.
Стабилизация видео: сравнение трёх инструментов
Не хотелось бы тратить байты читателя на долгое вступление, вспомним лишь, что вопрос программной стабилизации видео постоянно волнует многих и многих пользователей, всерьёз занимающихся видеосъёмкой с последующим монтажом. Несколько лет назад похожее исследование, касающееся способов программной стабилизации, было уже проделано, но с тех пор изменилось многое: некоторые программы и плагины исчезли с рынка, устарели, потеряв поддержку со стороны разработчика (или это разработчик утратил к своим продуктам интерес?). Как бы то ни было, сегодня существует лишь несколько способов программной стабилизации видео. Мы рассмотрим три наиболее актуальных инструмента и проанализируем качество работы каждого.
По техническим причинам сегодня не получится исследовать «слепую» стабилизацию, которую предлагает AviSynth — мощный инструмент, но, к сожалению, абсолютно лишённый «юзабилити» и доступный для понимания лишь тем, кто имеет способности к программированию.
Немалая часть жалоб в отношении работы программных стабилизаторов касается так называемой «мыльной» картинки. Она получается после того, как видео подверглось стабилизации. Попытаемся ответить на мучающий многих вопрос: насколько портится исходный кадр после его обработки различными стабилизаторами? Уточним — под словом «портится» мы будем понимать не только разрешение, но и чёткость деталей.
Заранее выдвинем предположение, что эта самая чёткость деталей непременно должна снизиться. Ведь программа, стабилизирующая картинку, не просто высчитывает траекторию перемещения плоскости кадра, основываясь на анализе движения в видео. Беда совсем в другом: после стабилизации обычно требуется увеличить кадр, растянув его до заданных размеров, с целью скрыть пляшущие бордюры. Почему и как это происходит, можно увидеть в следующем ролике:
Вы могли видеть, что эту раздражающую чёрную кайму удалось скрыть за пределами экрана лишь после того, как видеокадр был увеличен до 115% от исходного размера. Будет логичным предположить, что и чёткость границ объектов снизилась соответствующим образом, примерно на 15%…
Но прежде, чем проверять это, следует хорошенько прикинуть: что мы будем использовать в качестве исходного материала для такого тестирования? Сразу же вспоминается пресловутая тестовая таблица, с помощью которой удобно определять истинную разрешающую способность видеокамер. Однако нам требуется не статичная таблица, а пляшущая по кадру. Так, словно кто-то снимал её с рук. Нет ничего проще: такая съёмка легко имитируется. Кадру с таблицей мы присвоили фильтр, заставляющий картинку дрожать (плагин Sapphire Shake). Степень виртуального тремора руки подбиралась экспериментально: трое человек произвели съёмку настоящей бумажной таблицы с рук при небольшом зуммировании, после чего полученные кадры были проанализированы «на глаз». В результате такого короткого исследования была выведена средняя степень тремора среднестатистической человеческой руки, а также угол, на который камера при съёмке отклоняется от оси оптической системы. С похожими параметрами и был создан этот конечный тестовый ролик.
Поскольку среди читателей данной статьи мы желаем видеть возможно большее количество новичков, желающих приобщиться к «таинству» стабилизации видео, то следует уделить несколько абзацев краткому описанию работы с тремя представленными программами, а именно: как применять данный фильтр либо плагин, какие кнопки нажимать, да и вообще — есть ли у них кнопки?
Warp Stabilizer
Предельно простое решение: на клипе, который требуется стабилизировать, нужно нажать правой кнопкой мыши, после чего выбрать из выпадающего меню пункт Stabilize Motion.
Warp Stabilizer мгновенно присвоится данному клипу, и в панели Effect Control вы увидите уже работающий фильтр. Для достаточно мощного ПК работа этого фильтра практически незаметна, фильтр потребляет крайне мало компьютерных ресурсов. Правда, и работает он долго. Очень долго. В разы дольше (а то и в десятки раз), чем оба следующих программных решения.
Нужно отметить один несущественный, но раздражающий недостаток реализации фильтра Warp Stabilizer в After Effects. Мало того, что работает этот фильтр крайне медленно… Дело в том, что созданная программой траектория движения плоскости кадра и прочие параметры — все эти данные сохраняются непосредственно в проекте. Из-за этого файл проекта значительно увеличивается в объёме, и чем выше продолжительность стабилизированного ролика, тем более распухает объём файла. И, соответственно, дольше происходит сохранение файла проекта или его открытие.
Deshaker
Первое — и, пожалуй, главное — как открыть видео в VirtualDub? Не нужно обладать телепатическими способностями, чтобы предвидеть этот вопрос, который 100-процентно возникнет у любого владельца современной видеокамеры. Уже слышим: фанаты VirtualDub яростно нагромождают штабели способов открыть MTS или MOV для редактирования; все эти способы вполне работоспособны, за одним исключением… Чтобы овладеть искусством сращивания форматов видео с данным бесплатным программным обеспечением, недостаточно быть фанатом. Требуется знать и уметь применять множество факторов, влияющих на успех дела. Установить в систему нужные сплиттеры, либо в VirtualDub — плагины, или написать некие скрипты, после чего пошагово выполнить в точном порядке определённые действия, и, при везении (хорошей подготовке), файл всё-таки откроется. Правда, при этом имеется риск недополучить некоторые функции, да и при экспорте могут поджидать очередные затруднения… А потому…
А потому тем, кто не желает связываться с ненужными знаниями, проще всего обойти эту гору стороной: перед работой перекодировать нуждающееся в стабилизации видео в формат, понятный для VirtualDub без применения высокоинтеллектуального колдунства. Идеально подойдёт несжатое видео (но «весит» оно — ого-го!) либо сжатое lossless-кодеком (lossless — сжатие без потерь). При этом используемый кодек обязательно должен быть установлен в системе и доступен VirtualDub-у (обязательно проверить!). Так, в рамках подготовки данной статьи использовался бесплатный Lagarith Lossless Codec (правда, впоследствии оказалось, что видео, перекодированное в него, приобрело блекловатый вид в сравнении с оригиналом — что ж, будет наукой на будущее).
После того, как нужный файл открылся в VirtualDub, требуется присвоить ему фильтр Deshaker. Он прячется в списке фильтров, который вызывается командой Video — Filters — кнопка Add.
Найдя нужный фильтр в списке и нажав ОК, мы увидим окно настроек Deshaker-а. Подробно их описывать нет никакой нужды, это сделано в упоминавшейся статье. Наиболее важными имеющимися тут кнопками можно считать кнопки с названиями Pass 1 и Pass 2. Верно, о так называемом юзабилити разработчики бесплатного ПО вряд ли задумываются — им не до этих мелочей. Поэтому работа с данным фильтром заключается в постоянном участии пользователя. Так, при нажатой кнопке Pass 1 фильтр Deshaker не стабилизирует видео, а всего лишь анализирует движение в кадре, записывая в лог-файл траекторию движения плоскости кадра. Убедившись, что эта кнопка нажата, следует закрыть окно настроек фильтра и вернуться в VirtualDub.
Следующий шаг: если ползунок находится не в самом начале таймлинии, то обязательно перемотать его туда (это крайне важно!) и запустить воспроизведение. Но и запустить не абы как, а только и только предназначенной для этого кнопкой — на следующем скриншоте она обведена красной рамкой.
Начавшееся воспроизведение будет сопровождаться отображением векторов движения и прочих данных, которые фильтр «отлавливает» по ходу работы и записывает в лог-файл. Процессор в это время задействуется не больше чем на половину возможностей каждого ядра — это, в общем-то, неплохо, особенно в сравнении с Warp Stabilizer. Скорость анализа видео Full HD составила в среднем 7-10 кадров в секунду.
По окончании воспроизведения (анализа) нужно опять вернуться к списку фильтров (Ctrl+F), открыть окно настроек фильтра Deshaker и утопить кнопку с надписью Pass 2. Наконец, не забудьте изменить параметр, отвечающий за появление в видео чёрных бордюров. По умолчанию этот параметр выставлен так, что допускает появление в кадре пляшущего бордюра. Это совершенно не подходит нам, а посему изменим неправильные «умолчальные» значения. Как видим, здесь присутствует аж четыре способа скрыть чёрную кайму — что ж, придётся экспериментировать, подбирая лучший из них.
Осталось закрыть окно, вернуться в VirtualDub и — наконец-то! — экспортировать отстабилизированный клип в новый видеофайл или графическую последовательность. При экспорте программа станет учитывать информацию, хранящуюся в созданном лог-файле, поэтому итоговый клип будет иметь соответствующую стабилизацию.
proDAD Mercalli
Этот плагин прячется в копилке эффектов и фильтров той программы, в которую установлен. Мы приведём пример работы с плагином в Adobe Premiere pro CS 5.5. Для присвоения клипу данного плагина необходимо найти его в списке фильтров и перетащить на требуемый ролик.
Нажатие кнопки ОК запускает процесс анализа движения. Работает плагин довольно шустро, отщёлкивая по 30-50 кадров прогрессивного видео Full HD в секунду (правда, и ПК, на котором мы «гоняли» этот плагин, нельзя назвать старым увальнем — Intel Core i7-870 с 8 ГБ оперативной памяти DDR3).
Характерный момент, делающий разработчикам плагина честь: Mercalli настолько полно использует все имеющиеся ядра центрального процессора, что тот, разогревшись за 10-15 секунд работы, начинает истошно выть своим вентилятором в попытках охладиться.
Вот теперь со всей определённостью можно приступить к тестовым прогонам, чем мы и займёмся во второй, практической части настоящей статьи.
Стабилизация камеры смартфона: какая бывает и как работает
Сегодня камера — основной инструмент, который используется для продвижения современных смартфонов. Да, особенно — флагманов. Чтобы заставить пользователя купить очередную дорогую новинку, в ней должен быть не один, а сразу несколько модулей с максимальным разрешением, а, с недавнего времени, и зумом — маркетологи делают ставку именно на них. Если не учитывать датчик глубины, у того же Samsung Galaxy S20 Ultra три камеры с максимальным разрешением 108 Мп и гибридным зумом вплоть до 100x. Согласитесь, это звучит куда солиднее, чем три камеры с разрешением 12 Мп и оптическим зумом 2x из iPhone 11 Pro.
Тем не менее, о чем я уже несколько раз писал, маркетинговые цифры не определяют качество съемки. При сравнении фотографий на основные камеры двух смартфонов, которые упомянул выше, это становится особенно понятно — они снимают на одном и том же уровне за счет подобного размера диафрагмы и аналогичных алгоритмов работы нейросетей. Здесь же хочу остановиться на еще одной важной характеристике камеры — стабилизации изображения. Она может быть цифровой, оптической и гибридной, а ее использование влияет как на фотографии, так и на видеозаписи. Про все это расскажу подробнее.
В тему:
Для чего нужна стабилизация камеры
Стабилизация в камере смартфона нужна для того, чтобы компенсировать его движение, избежать смазанных фотографий, а также раздражающей тряски на видео. Стабилизация практически не имеет значения только в том случае, если съемка ведется со штатива, и спуск затвора производится с помощью пульта дистанционного управления. К примеру, удаленно контролировать приложение «Камера» на iPhone можно с помощью кнопок громкости на проводных и беспроводных наушниках, а также через одноименную программу на умных часах Apple Watch. Иначе без стабилизации не обойтись — картинка будет страдать.
Кстати, актуальные смартфоны Apple как раз отлично подходят для разговора про стабилизацию. К примеру, у самого популярного iPhone 11 две камеры: широкоугольная и ультраширокоугольная. Первая — венец инженерной мысли производителя. Она делает действительно качественные снимки не только за счет относительно большой диафрагмы f/1,8, сравнительно большого размера точек на 12-Мп матрице, а также продвинутых алгоритмов ИИ — за их четкость также отвечает оптическая стабилизация. А вот вторая здесь скорее для галочки — у нее и светосила посредственная, и стабилизация только цифровая.
Стабилизация может быть цифровой, оптической, а также гибридной — в последнем случае речь идет про одновременное использование двух предыдущих. Многие называют стабилизацию невидимым штативом, который избавляет фото и видео от последствий дрожащих рук. Но ее нельзя считать панацеей — да, она компенсирует тряску с относительно небольшой амплитудой. Тем не менее, если во время съемки вы будете достаточно активно двигаться (к примеру, пританцовывать), не спасет никакая из доступных на рынке стабилизаций. В данном случае можно будет сильно уменьшить выдержку, но сегодня точно не про нее.
Что такое цифровая стабилизация и каков принцип её работы
Цифровую стабилизацию также часто называют электронной — ее используют лишь из-за простоты. Для нее не нужны какие-то дополнительные аппаратные компоненты, которые увеличивают как себестоимость, так и дальнейшую стоимость гаджета — используются только те, которые уже встроены в смартфон, и основой технологии становится программное обеспечение. Несмотря на это, даже цифровая стабилизация значительно повышает качество фотографий и видеозаписей, поэтому уже на нее нужно обратить повышенное внимание. Тем не менее, справедливости ради, сегодня она используется повсеместно.
У цифровой стабилизации достаточно простой алгоритм работы. Представьте себе матрицу камеры смартфона, которая состоит из отдельных пикселей, — чтобы упростить, пусть это будет условный квадрат 10 на 10 точек. Когда стабилизация отключена, во время съемки используется вся площадь матрицы. После ее активации, происходит обрезка — вместо 10-ти начинает использоваться на пару точек меньше по каждой стороне. Основываясь на данных гироскопа и акселерометра, квадрат 8 на 8 перемещается по матрице камеры, чтобы компенсировать тряску гаджета. Вот и весь секрет.
Число точек, которые фактически обрезает каждое устройство, зависит от агрессивности работы цифровой стабилизации, используемой им. После обрезки числа пикселей качество изображения также падает — чем более агрессивно работает стабилизация, тем сильнее. Тем не менее, чаще всего это оправдано отсутствием смазанных участков. Ранее про цифровую стабилизацию было больше разговоров, но сегодня без помощи оптической ее оставляют только в недорогих смартфонах.
Что такое оптическая стабилизация и каков принцип её работы
Несмотря на то, что далеко не во всех камерах современных смартфонов используется оптическая стабилизация, это технология далеко не нова — если точнее, ей не меньше четверти века. Еще в 1995 году ее в своих камерах и объективах начала использовать компания Canon. В ее варианте она называется Image Stabilization (IS), поэтому другим компаниям пришлось придумываться собственные названия: Vibration Reduction (VR) у Nikon, Optical SteadyShot (OSS) у Sony, Optical Image Stabilizer (OIS) у Fujifilm. Первым смартфоном с системой оптической стабилизации принято считать Nokia Lumia 920 из 2012-го.
Для использования возможностей оптической стабилизации, в камере смартфона используется специальный подвижный механизм, который перемещает не изображение по матрице, а всю матрицу целиком. В итоге картинка остается резкой, несмотря на тряску. Тем не менее, полагаться на оптическую стабилизацию на 100% также нельзя. Следует отменить, что у каждого производителя камеры свои представления по поводу работы оптической стабилизации, поэтому и качество результата в виде фотографии может достаточно сильно отличаться. Более того, движение камеры также ограничено, поэтому стабилизация компенсирует лишь небольшую тряску.
Что лучше: оптическая или цифровая стабилизация
В сравнении с цифровой, оптическая стабилизация явно выигрывает. Начнем с того, что она не обрезает использование матрицы, поэтому изображение получается более ярким, четким, с меньшим количеством шумов и так далее. Более того, чаще всего оптическая стабилизация отыгрывает процесс компенсации тряски куда более правильно, ведь она не считывает данные с гироскопа или акселерометра, а использует собственные аппаратные механизмы. Оптическая стабилизация используется даже не в самых новых смартфонах — к примеру, она есть в Xiaomi Mi5, которому уже несколько лет отроду.
Интересный факт: некоторые считают, что цифровая стабилизация лучше оптической справляется со съемкой видео. К примеру, в первом поколении смартфонов Pixel используется именно она, и представители Google объясняют это тем, что она способна предугадывать движение, поэтому заметно быстрее отыгрывает его компенсацию — это критично во время съемки роликов. Тем не менее, во втором поколении Pixel инженеры уже использую гибридную стабилизацию, про которую дальше.
Что такое гибридная стабилизация и каков принцип её работы
Яркий пример смартфона, в котором используется гибридная стабилизация изображения — Google Pixel 4. Она предполагает объединение возможностей цифрового и оптического механизма, что позволяет сделать картинку максимально четкой и избежать смазываний даже в самых активных условиях съемки. По задумке, подобный гаджет должен использовать оптическую стабилизацию всегда, а цифровую подключать либо с помощью дополнительной функции, либо самостоятельно интеллектуальным образом. Теоретически подобный механизм должен значительно повысить эффективность стабилизации.
Какая стабилизация лучше
Чтобы раскрыть данный вопрос, нужно ответить вот на что: в каких условиях обычно делается фотография или записывается видео на мобильное устройство? И еще: насколько сильно его владелец заморачивается, чтобы добиться качественной картинки? Ответ простой — пользователь хочет получать снимки и ролики максимального качества, не вкладывая в это никаких усилий. Отсюда и достаточно простой вывод — у гаджета должна быть максимально хорошая камера, которая будет использовать гибридную стабилизацию. Кстати, вот наглядный пример съемки на «бородатый» Google Pixel 2 с ней и без нее:
Результат налицо, без стабилизации ролик выглядит просто отвратительно, а вот с ней вполне пригодным для дальнейшего использования. Стоит отметить, что в данном случае условия как раз максимально экстремальные. С одной стороны, камере сложно из-за тряски. С другой стороны, она должна охватывать широкий динамический диапазон из-за достаточно сложной с точки зрения света композиции кадра. Конечно, сложно сказать, что Google Pixel 2 в этом плане справился идеально, но речь о глобальном качестве картинки, а именно о разнице при использовании гибридной стабилизации.
Какие перспективы у стабилизации камер мобильных устройств
У стабилизации изображения в камерах смартфонах есть три равнозначных пути развития. Во-первых, ее оптические механизмы становятся все более доступными, поэтому увеличивают ширину своего распространения не только по смартфонам, но и по камерам в них — так, глядишь, и все модули будущих iPhone будут с этим работать. Во-вторых, будут появляться более совершенные механизмы оптической стабилизации, которые уже появляются в концептофонах — том же VIVO APEX 2020 (в нем используется карданный механизм стабилизации, который увеличивает амплитуду движения камеры для компенсации даже самой агрессивной тряски). В-третьих, нельзя отбрасывать в сторону интеллектуальные программные механизмы, которые продолжают развиваться.