Что значит составить равенство

Числовые равенства, свойства числовых равенств

Получив общее представление о равенствах в математике, можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим свойства числовых равенств.

Навигация по странице.

Что такое числовое равенство?

Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в натуральные числа. К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.

Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:

Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.

Свойства числовых равенств

Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.

Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность: число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.

Основные свойства числовых равенств

Другие важные свойства

Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.

И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.

Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.

В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу: Что значит составить равенство

Источник

Верное равенство

Числовые равенства, свойства числовых равенств

Что значит составить равенство

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2=2, 5=5 и т.д.

И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа).

Например, равенство 2=2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5+7=12; 6-1=5; 2·1=2; 21:7=3 и т.п.

Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, (2+2)+5=2+(5+2); 4·(4−(1+2))+12:4−1=4·1+3−1 и т.п.

Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a−b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6=6, −3=−3, 437=437 и т.п.

Нетрудно продемонстрировать справедливость равенства a−a=0 для любого числа a: разность a−a можно записать как сумму a+(−a), а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число −a, и сумма их есть нуль.

Согласно свойству симметричности числовых равенств: если число a равно числу b,
то число b равно числу a. К примеру, 43=64, тогда 64=43.

Обосновать данное свойство можно через разность чисел. Условию a=b соответствует равенство a−b=0. Докажем, что b−a=0.

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81=9 и 9=32, то 81=32.

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a=b и b=c соответствуют равенства a−b=0 и b−c=0.

Докажем справедливость равенства a−c=0, из чего последует равенство чисел a и c. Посколькусложение числа с нулем не меняет само число, то a−c запишем в виде a+0−c.

Вместо нуля подставим сумму противоположных чисел −b и b, тогда крайнее выражение станет таким: a+(−b+b)−c. Выполним группировку слагаемых: (a−b)+(b−c). Разности в скобках равны нулю, тогда и сумма (a−b)+(b−c) есть нуль.

Это доказывает, что, когда a−b=0 и b−c=0, верно равенство a−c=0, откуда a=c.

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a=b, где a и b – некоторые числа, то a+c=b+c при любом c.

В качестве обоснования запишем разность (a+c)−(b+c).
Это выражение легко преобразуется в вид (a−b)+(c−c).
Из a=b по условию следует, что a−b=0 и c−c=0, тогда (a−b)+(c−c)=0+0=0. Это доказывает, что (a+c)−(b+c)=0, следовательно, a+c=b+c;

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a=b, то a·c=b·c при любом числе c. Если c≠0, тогда и a:c=b:c.

Равенство верно: a·c−b·c=(a−b)·c=0·c=0, и из него следует равенство произведений a·c и b·c. А деление на отличное от нуля число c возможно записать как умножение на обратное число 1c;

При a и b, отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a≠0, b≠0 и a=b, то 1a=1b. Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a=b на число, равное произведению a·b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a=b и c=d, то a+c=b+d для любых чисел a, b, c и d.

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.

К равенству a=b прибавим число c, а к равенству c=d – число b, итогом станут верные числовые равенства: a+c=b+c и c+b=d+b. Крайнее запишем в виде: b+c=b+d.

Из равенств a+c=b+c и b+c=b+d согласно свойству транзитивности следует равенство a+c=b+d. Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a=b и c=d, то a·c=b·d.

Доказательство этого свойства подобно доказательству предыдущего.

Умножим обе части равенства на любое число, умножим a=b на c, а c=d на b, получим верные числовые равенства a·c=b·c и c·b=d·b. Крайнее запишем как b·c=b·d.

Свойство транзитивности дает возможность из равенства a·c=b·c и b·c=b·d вывести равенство a·c=b·d, которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a=b, то an=bn для любых чисел a и b, и любого натурального числа n.

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a=bи с≠0, то a:c=b:c.

Если a=b, a=b, a≠0 и b≠0, то 1a=1b.

Если a=b и c=d, то a·c=b·d.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое равенство? Первый признак и принципы равенства

Что значит составить равенство

«Равенство» – это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A : B = C : D. Отсюда вытекает основное свойство пропорции: A * D = D * C, где A и D – крайние члены пропорции, а В и С – средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: что такое уравнение. Под уравнением понимается равенство, в котором присутствуют неизвестные величины.

Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно.

В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3)2=15∙х+10. Это выражение можно преобразовать в 9∙х2+18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х2 + 12∙х + 4 = 15∙х + 10

9∙х2 + 12∙х + 4 – 15∙х – 10 = 0

Дальше уравнение решается с помощью дискриминанта.

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть квадратный корень и выражение под ним.

Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен.

Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) – 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.

Источник

Что такое числовые выражения, равенства, неравенства и уравнения

Выражение

Числовое выражение — это числа, соединённые знаками арифметических действий: сложение, вычитание, умножение и деление.

Найти значение числового выражения — это значит выполнить все указанные арифметические действия и получить конкретное число.

Кроме арифметических действий выражения могут содержать скобки, которые влияют на порядок действий при решении выражения.

Пример 1:

Равенство

Равенства — это числа или выражения, соединённые знаком = (равно).

Равенство считается верным, если числа или числовые выражения слева и справа от знака =, имеют равное значение.

Равенство считается неверным, если числа или числовые выражения слева и справа от знака =, не равны (≠).

При решении равенств соблюдается следующий порядок действий:

Пример 2:

1) 5 = 7 — равенство неверно, так как 5 ≠ 7.

2) 36 : 2 = 6 • 3 — равенство верно, так как:

3) 48 + 9 = 54 — 1 — равенство неверно, так как:

Неравенство

Пример 3:

1) 5 > 7 — неравенство неверно, так как 5

3) 4 + 5 • 6 > (4 + 5) • 6 — неравенство неверно, так как:

Уравнение

Уравнение — это равенство, которое содержит неизвестное число, обозначенное какой-либо латинской буквой: x, y, a, b, z, d и т.д.

Корень уравнения — это число, при подставлении котрого вместо буквы в равенство делает это равенство верным.

Решить уравнение — это значит найти все возможные корни уравнения.

Порядок и правила решения уравнений зависят от того, к какому типу они относятся:

Источник

Понятие равенства, знак равенства, связанные определения.

В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.

Навигация по странице.

Что такое равенство?

Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».

Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.

Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные. В качестве примера приведем два равных квадрата Что значит составить равенствои Что значит составить равенство. Отличающиеся объекты, в свою очередь, называют неравными.

Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.

Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.

Запись равенств, знак равно

Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.

Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.

Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами.

Верные и неверные равенства

Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства. Разберемся с этим на примерах.

Свойства равенств

Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.

Двойные, тройные равенства и т.д.

В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.

Источник

Урок математики в 1-м классе на тему «Первое понятие о равенстве. Знак равенства «=». Запись числовых равенств»

I. Организационный момент.

Учитель: Поиграем, посчитаем, что-то новое узнаем. Возьмём с собой воображение, внимание, наблюдательность, настойчивость – и смело в путь!

Работа с геометрическим материалом.

(Пособие “Нестандартные задачи по математике”, Москва, изд. “Экзамен”, 2008 год).

Учитель: Рассмотрите рисунок на странице 14, задание № 3. (Задание записано на доске). Какие геометрические фигуры вы увидели?

Дети: Треугольники, четырёхугольники.

Учитель: Посчитайте, сколько треугольников нарисовано?

Дети: Четыре треугольника.

Учитель: А я увидела восемь треугольников.

(Дети под руководством учителя находят и обводят цветными карандашами восемь треугольников).

Что значит составить равенство

Рисунок 1

Учитель: Молодцы! Вы очень внимательны. Хорошо видите линии.

Работа со счётными палочками.

Учитель: Приготовьте для работы пять счётных палочек. Выложите на парте точно такую же фигуру, как я нарисовала на доске.

Что значит составить равенство

Рисунок 2

Учитель: Подумайте, как нужно переложить одну палочку, чтобы получилось два треугольника? (Дети выполняют работу индивидуально на партах. Учитель просматривает предложенные решения)

Учитель: Сколько решений у данного задания?

Что значит составить равенство

Рисунок 3

Учитель: А теперь попробуйте одним движением превратить два треугольника в два прямоугольника.

Дети: Теперь два решения.

Что значит составить равенство

Рисунок 4

Задание на развитие логического мышления.

Учитель: Сейчас поработаем в тетрадях. Приготовьте тетрадь по математике, цветные карандаши.

Рассмотрите запись на доске, найдите закономерность.

На основе этой закономерности составьте в тетрадях свой ряд из геометрических фигур: треугольников, кругов и квадратов. (Один ученик выполняет задание у доски с помощью счётного материала – кругов, треугольников, квадратов. После выполнения задания проводится обсуждение).

Дети: У этого задания может быть другое решение. (Выясняется, что есть три правильных варианта построения закономерности из геометрических фигур).

Учитель: Совершенно изумительно! Вы умеете думать, доказывать свою правоту. Это очень хорошо!

Учитель: Проведём физкультминутку для ума. Послушайте, подумайте, посчитайте.

Над заборчиком видны шесть маленьких рожек. Сколько козочек спряталось за забором?

Учитель: Почему? Объясните.

Дети: У одной козочки пара рожек. Чтобы получилось шесть рожек, нужно три пары. Значит, три козочки.

Учитель: Замечательно! Еще одно упражнение. Предупреждаю, это задача-шутка.

Шесть ног, две головы, один хвост. Кто это?

Дети: Это чудище! Такого не бывает!

Учитель: Вы рассуждайте. Если две головы… Значит…

Дети: Это кого-то двое.

Учитель: Хорошо. Шесть ног на двоих… Значит…

Дети: У одного – две ноги, у другого – четыре.

Учитель: Есть ещё один хвост на двоих.

Дети: Это – человек на лошади. Всадник.

Раз – подняться, потянуться,
Два – согнуться, разогнуться,
Три – в ладоши три хлопка,
Головою три кивка.
На четыре – руки шире,
Пять – руками помахать,
Шесть – за парту сесть опять.

IV. Открытие нового материала.

Учитель: Какое одинаковое число было в предыдущих двух задачах?

Учитель: В рабочей тетради выполните следующий рисунок: на одной строчке – шесть квадратов, под ними – шесть кругов. (Дети выполняют работу в тетрадях по математике цветными карандашами).

Каким числом обозначим количество квадратов? Кругов?

Учитель: Какой цифрой записывается число шесть?

Учитель: В тетради под рисунком запишите через клетку столько же цифр 6, сколько нарисовано кругов.

Сколько написали цифр?

Дети: Кругов шесть, значит и цифр должно быть шесть.

Вы дали задание написать столько же цифр, сколько и кругов.

Учитель: Значит, что можно сказать о количестве кругов и цифр?

Учитель: Попрошу вас записать всё, что вы мне сейчас сказали в тетрадь.

А мы не все буквы умеем писать.

Это много слов нужно записать.

Учитель: Но у нас урок математики. Нужно записать не буквами и словами, а цифрами и знаками.

Дети: Я знаю! Есть специальный знак. “Равно”.

V. Работа с новым материалом.

Учитель: Молодец, Наташа! Чтобы об этом знаке узнали все, откроем учебник на странице 32, № 50. (Задание записано на доске. Далее работа проводится на основе задания № 50)

Учитель: Сколько морковок собрал ослик?

Учитель: Сколько желудей собрал кабанчик?

Дети: Четыре. Столько же.

Учитель: Прочитайте утверждение. (Введение понятия “равное число”, “равенство”, знак “равно”)

(Проводится с помощью наглядного ряда на компьютере)

Сколько зайчиков у нас.
Столько и подпрыгнем раз.
Сколько палочек до точки,
Столько встанем на носочки.
Сколько точек будет в круге,
Столько раз поднимем руки.

Учитель: Продолжим работу по учебнику. О ком или о чём на рисунке можно сказать “равное число”, “равно”?

Дети: Ослик один и кабанчик один. Их равное число.

Учитель: Как записать равенство?

Дети: 1 = 1 (Один ученик составляет равенство на доске с помощью магнитных цифр. Остальные – записывают в рабочие тетради)

Учитель: Какие ещё равенства можно составить по рисунку?

Дети: Две морковки на грядке. Два жёлудя на дереве.

Учитель: Составьте и запишите равенство. (Проводится работа, аналогичная предыдущей)

Учитель: Подумайте, сколько станет морковок у ослика, если он соберет оставшиеся на грядке морковки?

Учитель: Что должен сделать кабанчик, чтобы у него стало столь же желудей, сколько морковок у ослика?

Дети: Собрать оставшиеся жёлуди.

Учитель: Сколько получится желудей?

Учитель: Запишите в тетрадь и прочитайте новое равенство. (Дети самостоятельно записывают равенство в рабочую тетрадь. Затем несколько человек зачитывают получившееся равенство)

Что значит составить равенство

Что значит составить равенство

VII. Рефлексия. Итог урока.

Учитель: Что новое узнали на уроке?

Дети: Что такое равенство.

Как записать равенство.

Учитель: Скажите по-другому фразу “одно и тоже число”.

Дети: Одинаковые числа. Равные числа.

Учитель: Покажите с помощью счётных палочек, как выглядит знак “равно”. (Дети выкладывают на партах две счётных палочки в виде знака “равно”)

Учитель: Как математическими символами – цифрами и знаком – записать предложение: “За соседней партой сидит столько же учеников, сколько и за моей”?

Дети: Два равно двум. (На доске один ученик записывает равенство 2=2)

Учитель: Послушайте высказывание: “У двух матерей по пяти сыновей”. Скажите тоже самое, используя математические термины.

Дети: Пять равно пяти.

Учитель: А теперь покажите мне это равенство при помощи рук. Что это?

Дети: Это руки и пальцы. (Показывают руки)

Учитель: Сегодня на уроке вы потрудились отлично. Это значит, что ваш труд можно оценить на “пять”! Молодцы!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *