Что значит слово солнце

СОЛНЦЕ

Полезное

Смотреть что такое «СОЛНЦЕ» в других словарях:

СОЛНЦЕ — СОЛНЦЕ, солнышко ср. наше дневное светило; величайшее, самосветное и срединное тело нашей вселенной, господствующее силою тяготения, светом и теплом над всеми земными мирами, планетами. Солнце, а в наречиях славянских слонце, слунко и сонце,… … Толковый словарь Даля

СОЛНЦЕ — [онц], солнца, мн. солнца и (устар.) солнцы, ср. 1. только ед. Центральное небесное светило нашей планетной системы, представляющее собою гигантский раскаленный шар, излучающий свет и тепло. Земля вращается вокруг солнца. Солнце взошло над… … Толковый словарь Ушакова

солнце — как солнце на небе, на одном солнце онучи сушили, пятна в солнце, пятна на солнце.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. солнце солнцепек, (ближайшая к нам) звезда, паргелий,… … Словарь синонимов

Солнце — (справа разрез). СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2´1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86´1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К … Иллюстрированный энциклопедический словарь

СОЛНЦЕ — СОЛНЦЕ, звезда в центре СОЛНЕЧНОЙ СИСТЕМЫ, вокруг которой на своих орбитах обращаются другие тела Солнечной системы. Кажущееся суточное движение Солнца по небу и его годовое движение по ЭКЛИПТИКЕ вызваны, соответственно, вращением Земли вокруг… … Научно-технический энциклопедический словарь

СОЛНЦЕ — СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2?1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86?1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К. Период вращения… … Современная энциклопедия

СОЛНЦЕ. — СОЛНЦЕ. Содержание: 1. Введение 2. Внутреннее строение 3. Атмосфера 4. Магнитные поля 5. Излучение 1. Введение С. газовый, точнее плазменный, шар. Радиус С. см, т. е. в 109 раз больше экваториального радиуса Земли; масса С. г, т. е. в 333000 раз… … Физическая энциклопедия

СОЛНЦЕ — центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда карлик спектрального класса G2; масса М? 2.103 кг, радиус R?=696 т. км, средняя плотность 1,416.103 кг/м&sup3, светимость L?=3,86.1023 кВт, эффективная температура… … Большой Энциклопедический словарь

СОЛНЦЕ — см. в ст. Солярные мифы. (Источник: «Мифы народов мира».) солнце То, что Солнце пользовалось у кельтов особым почитанием, со всей очевидностью показывают многочисленные сюжеты самых разнообразных кельтских артефактов, найденные во время… … Энциклопедия мифологии

«Солнце» — «СОЛНЦЕ», стихотв. миниатюра раннего Л. (1832), основанная на поэтич. уподоблении (зимнее солнце взор «молодой девы») и повторяющая его излюбленную цветовую гамму: белизна снега в сочетании с золотым или багровым солнечным отливом (ср. «Кто в… … Лермонтовская энциклопедия

Солнце. — солнце. Начальная часть сложных слов, вносящая значение слова: солнце I (солнцегрев, солнцелечение, солнцелюбивый и т.п.). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Источник

СОЛНЦЕ

Полезное

Смотреть что такое «СОЛНЦЕ» в других словарях:

СОЛНЦЕ — СОЛНЦЕ, солнышко ср. наше дневное светило; величайшее, самосветное и срединное тело нашей вселенной, господствующее силою тяготения, светом и теплом над всеми земными мирами, планетами. Солнце, а в наречиях славянских слонце, слунко и сонце,… … Толковый словарь Даля

солнце — как солнце на небе, на одном солнце онучи сушили, пятна в солнце, пятна на солнце.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. солнце солнцепек, (ближайшая к нам) звезда, паргелий,… … Словарь синонимов

Солнце — (справа разрез). СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2´1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86´1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К … Иллюстрированный энциклопедический словарь

СОЛНЦЕ — СОЛНЦЕ, звезда в центре СОЛНЕЧНОЙ СИСТЕМЫ, вокруг которой на своих орбитах обращаются другие тела Солнечной системы. Кажущееся суточное движение Солнца по небу и его годовое движение по ЭКЛИПТИКЕ вызваны, соответственно, вращением Земли вокруг… … Научно-технический энциклопедический словарь

СОЛНЦЕ — СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2?1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86?1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К. Период вращения… … Современная энциклопедия

СОЛНЦЕ. — СОЛНЦЕ. Содержание: 1. Введение 2. Внутреннее строение 3. Атмосфера 4. Магнитные поля 5. Излучение 1. Введение С. газовый, точнее плазменный, шар. Радиус С. см, т. е. в 109 раз больше экваториального радиуса Земли; масса С. г, т. е. в 333000 раз… … Физическая энциклопедия

СОЛНЦЕ — центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда карлик спектрального класса G2; масса М? 2.103 кг, радиус R?=696 т. км, средняя плотность 1,416.103 кг/м&sup3, светимость L?=3,86.1023 кВт, эффективная температура… … Большой Энциклопедический словарь

СОЛНЦЕ — см. в ст. Солярные мифы. (Источник: «Мифы народов мира».) солнце То, что Солнце пользовалось у кельтов особым почитанием, со всей очевидностью показывают многочисленные сюжеты самых разнообразных кельтских артефактов, найденные во время… … Энциклопедия мифологии

«Солнце» — «СОЛНЦЕ», стихотв. миниатюра раннего Л. (1832), основанная на поэтич. уподоблении (зимнее солнце взор «молодой девы») и повторяющая его излюбленную цветовую гамму: белизна снега в сочетании с золотым или багровым солнечным отливом (ср. «Кто в… … Лермонтовская энциклопедия

Солнце. — солнце. Начальная часть сложных слов, вносящая значение слова: солнце I (солнцегрев, солнцелечение, солнцелюбивый и т.п.). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Источник

Значение слова солнце

Словарь Ушакова

с о лнце [онц], солнца, мн. солнца и (устар.) солнцы, ср.

3. перен., только ед. О ком-чем-нибудь очень дорогом, ценном, являющемся источником жизни, счастья для кого-нибудь (книж.). Ты мое солнце.

| чего. Источник, средоточие чего-нибудь (ритор.). Солнце правды.

Словарь Ожегова

СОЛНЦЕ [ он ], а, ср.

1. (в терминологическом значении С прописное). Небесное светило раскалённое плазменное тело шарообразной формы, вокруг к-рого обращается Земля и другие планеты. С. звезда-карлик. Определять время по солнцу (по его положению в небе). Есть правда под солнцем (т. е. на земле, у людей). Найти своё место под солнцем (т. е. положение, место в жизни, среди людей). До солнца (до восхода солнца). С. на лето, зима на мороз (о зимнем времени, когда удлиняется день, но усиливаются морозы; разг.). И на с. бывают пятна (говорится в знач. даже великие люди не безупречны).

2. Свет, тепло, излучаемые этим светилом. Не сиди на солнце. В. комнате много солнца.

3. перен., чего. То, что является источником, средоточием чегон. ценного, высокого, жизненно необходимого (высок.). С. правды.

4. Гимнастическое упражнение вращение тела вокруг перекладины (во 2 знач.). (разг.). Крутить с.

5. Раскрой одежды в виде круга (разг.). Юбка с.

| ласк. солнышко, а, ср. (к 1 и 2 знач.).

Словарь Ефремовой

ср.
Центральное тело Солнечной системы, звезда, представляющая собою гигантский
раскаленный шар, излучающий свет и тепло.

Толковый словарь живого великорусского языка, Даль Владимир

солнышко ср. наше дневное светило; величайшее, самосветное и срединное тело нашей вселенной, господствующее силою тяготения, светом и теплом над всеми земными мирами, планетами. Солнце, а в наречиях славянских слонце, слунко и сонце, сунце, на прочих европейских языках также сходно кажется однако в связи с глаг. слонить, с сущ. слон и пр. Восход, всход солнца, видимый подъем его, с началом дня, и

страна, точка эта на закрое (горизонте), восток. Заход, закат, запад солнца, скрытие его к ночи под закрой, и

Солнопек, ожег солнца, загар, опал, случается весной; солнцем опаляет кожу, или даже поражает ударом.

Солнопек, место, где солнце жарко припекает, открытое кругом, немного возвышенное. На солнопеках появляются первые проталинки.

Энциклопедический словарь

центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2; масса М?

Большая Советская Энциклопедия

Вращение С. вокруг оси происходит в том же направлении, что и вращение Земли, в плоскости, наклоненной на 7╟15′ к плоскости орбиты Земли (эклиптике). Скорость вращения определяется по видимому движению различных деталей в атмосфере С. и по сдвигу спектральных линий в спектре края диска С. вследствие эффекта Доплера. Таким образом было обнаружено, что период вращения С. неодинаков на разных широтах. Положение различных деталей на поверхности С. определяется с помощью гелиографических координат, отсчитываемых от солнечного экватора (гелиографическая широта) и от центрального меридиана видимого диска С. или от некоторого меридиана, выбранного в качестве начального (т. н. меридиана Каррингтона). При этом считают, что С. вращается как твёрдое тело. Положение начального меридиана приводится в Астрономических ежегодниках на каждый день. Там же приводятся сведения о положении оси С. на небесной сфере. Один оборот относительно Земли точки с гелиографической широтой 17╟ совершают за 27,275 сут (синодический период). Время оборота на той же широте С. относительно звёзд (сидерический период) ≈ 25,38 сут. Угловая скорость вращения w для сидерического вращения изменяется с гелиографической широтой j по закону: w = 14╟, 44≈3╟ sin2j в сутки. Линейная скорость вращения на экваторе С. ≈ около 2000 м/сек.

Внутреннее строение С. определено в предположении, что оно является сферически симметричным телом и находится в равновесии. Уравнение переноса энергии, закон сохранения энергии, уравнение состояния идеального газа, закон Стефана ≈ Больцмана и условия гидростатического, лучистого и конвективного равновесия вместе с определяемыми из наблюдений значениями полной светимости, полной массы и радиуса С. и данными о его химическом составе дают возможность построить модель внутреннего строения С. Полагают, что содержание водорода в С. по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. На основании этих предположений вычислено, что температура в центре С. составляет 10≈15×106К, плотность около 1,5∙105кг/м3, давление 3,4∙1016 н/м2 (около 3∙1011 атмосфер). Считается, что источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру С., являются ядерные реакции, происходящие в недрах С. Среднее количество энергии, вырабатываемое внутри С., составляет 1,92 эрг на г в сек. Выделение энергии определяется ядерными реакциями, при которых водород превращается в гелий. На С. возможны 2 группы термоядерных реакций такого типа: т. н. протон-протонный (водородный) цикл и углеродный цикл (цикл Бете). Наиболее вероятно, что на С. преобладает протон-протонный цикл, состоящий из 3 реакций, в первой из которых из ядер водорода образуются ядра дейтерия (тяжёлый изотоп водорода, атомная масса 2); во второй из ядер дейтерия образуются ядра изотопа гелия с атомной массой 3 и, наконец, в третьей из них образуются ядра устойчивого изотопа гелия с атомной массой 4.

Спектральный состав света, излучаемого С., т. е. распределение энергии в спектре С. (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре С. соответствует длине волны 4600 Å. Спектр С. ≈ это непрерывный спектр, на который наложено более 20 тыс. линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы С., но и о физических условиях в тех слоях, в которых образуются те или иные линии поглощения. Преобладающим элементом на С. является водород. Количество атомов гелия в 4≈5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, кремний, сера, железо и др. В спектре С. можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и др.

Магнитные поля на С. измеряются главным образом по зеемановскому расщеплению линий поглощения в спектре С. (см. Зеемана эффект ). Различают несколько типов магнитных полей на С. (см. Солнечный магнетизм ). Общее магнитное ноле С. невелико и достигает напряжённости в 1 э той или иной полярности и меняется со временем. Это поле тесно связано с межпланетным магнитным полем и его секторной структурой. Магнитные поля, связанные с солнечной активностью, могут достигать в солнечных пятнах напряжённости в несколько тысяч э. Структура магнитных полей в активных областях очень запутана, чередуются магнитные полюсы различной полярности. Встречаются также локальные магнитные области с напряжённостью поля в сотни э вне солнечных пятен. Магнитные поля проникают и в хромосферу, и в солнечную корону. Большую роль на С. играют магнитогазодинамические и плазменные процессы. При температуре 5000≈10 000 К газ достаточно ионизован, проводимость его велика и благодаря огромным масштабам солнечных явлений значение электромеханических и магнитомеханических взаимодействий весьма велико (см. Космическая магнитогидродинамика ).

Атмосферу С. образуют внешние, доступные наблюдениям слои. Почти всё излучение С. исходит из нижней части его атмосферы, называемой фотосферой. На основании уравнений лучистого переноса энергии, лучистого и локального термодинамического равновесия и наблюдаемого потока излучения можно теоретически построить модель распределения температуры и плотности с глубиной в фотосфере. Толщина фотосферы около 300 км, её средняя плотность 3×10√4кг/м3. температура в фотосфере падает по мере перехода к более внешним слоям, среднее её значение порядка 6000 К, на границе фотосферы около 4200 К. Давление меняется от 2×104 до 102 н/м2. Существование конвекции в подфотосферной зоне С. проявляется в неравномерной яркости фотосферы, видимой её зернистости ≈ т. н. грануляционной структуре. Гранулы представляют собой яркие пятнышки более или менее круглой формы, видимые на изображении С., полученном в белом свете (рис. 2). Размер гранул 150≈1000 км, время жизни 5≈10 мин. отдельные гранулы удаётся наблюдать в течение 20 мин. Иногда гранулы образуют скопления размером до 30 000 км. Гранулы ярче межгранульных промежутков на 20≈30%, что соответствует разнице в температуре в среднем на 300 К. В отличие от др. образований, на поверхности С. грануляция одинакова на всех гелиографических широтах и не зависит от солнечной активности. Скорости хаотических движений (турбулентные скорости) в фотосфере составляют по различным определениям 1≈3 км/сек. В фотосфере обнаружены квазипериодические колебательные движения в радиальном направлении. Они происходят на площадках размерами 2≈3 тыс. км, с периодом около 5 мин и амплитудой скорости порядка 500 м/сек. После нескольких периодов колебания в данном месте затухают, затем могут возникнуть снова. Наблюдения показали также существование ячеек, в которых движение происходит в горизонтальном направлении от центра ячейки к её границам. Скорости таких движений около 500 м/сек. Размеры ячеек ≈ супергранул ≈ 30≈40 тыс. км. По положению супергранулы совпадают с ячейками хромосферной сетки. На границах супергранул магнитное поле усилено. Предполагают, что супергранулы отражают существование на глубине нескольких тыс. км под поверхностью конвективных ячеек такого же размера. Первоначально предполагалось, что фотосфера даёт только непрерывное излучение, а линии поглощения образуются в расположенном над ней обращающем слое. Позже было установлено, что в фотосфере образуются и спектральные линии, и непрерывный спектр. Однако для упрощения математических выкладок при расчёте спектральных линий понятие обращающего слоя иногда применяется.

Солнечные пятна и факелы. Часто в фотосфере наблюдаются солнечные пятна и факелы (рис. 1 и 2). Солнечные пятна ≈ это тёмные образования, состоящие, как правило, из более тёмного ядра (тени) и окружающей его полутени. Диаметры пятен достигают 200 000 км. Иногда пятно бывает окружено светлой каёмкой. Совсем маленькие пятна называются порами. Время жизни пятен ≈ от нескольких ч до нескольких мес. В спектре пятен наблюдается ещё больше линий и полос поглощения, чем в спектре фотосферы, он напоминает спектр звезды спектрального класса КО. Смещения линий в спектре пятен из-за эффекта Доплера указывают на движение вещества в пятнах ≈ вытекание на более низких уровнях и втекание на более высоких, скорости движения достигают 3×103м/сек (эффект Эвершеда). Из сравнений интенсивностей линий и непрерывного спектра пятен и фотосферы следует, что пятна холоднее фотосферы на 1≈2 тыс. градусов (4500 К и ниже). Вследствие этого на фоне фотосферы пятна кажутся тёмными, яркость ядра составляет 0,2≈0,5 яркости фотосферы, яркость полутени около 80% фотосферной. Все солнечные пятна обладают сильным магнитным полем, достигающим для крупных пятен напряжённости 5000 э. Обычно пятна образуют группы, которые по своему магнитному полю могут быть униполярными, биполярными и мультиполярными, т. е. содержащими много пятен различной полярности, часто объединённых общей полутенью. Группы пятен всегда окружены факелами и флоккулами, протуберанцами, вблизи них иногда происходят солнечные вспышки, и в солнечной короне над ними наблюдаются образования в виде лучей шлемов, опахал ≈ всё это вместе образует активную область на С. Среднегодовое число наблюдаемых пятен и активных областей, а также средняя площадь, занимаемая ими, меняется с периодом около 11 лет. Это ≈ средняя величина, продолжительность же отдельных циклов солнечной активности колеблется от 7,5 до 16 лет (см. Солнечная активность ). Наибольшее число пятен, одновременно видимых на поверхности С., меняется для различных циклов более чем в два раза. В основном пятна встречаются в т. н. королевских зонах, простирающихся от 5 до 30╟ гелиографической широты по обе стороны солнечного экватора. В начале цикла солнечной активности широта места расположения пятен выше, в конце цикла ≈ ниже, а на более высоких широтах появляются пятна нового цикла. Чаще наблюдаются биполярные группы пятен, состоящие из двух крупных пятен ≈ головного и последующего, имеющих противоположную магнитную полярность, и несколько более мелких. Головные пятна имеют одну и ту же полярность в течение всего цикла солнечной активности, эти полярности противоположны в северной и южной полусферах С. По-видимому, пятна представляют собой углубления в фотосфере, а плотность вещества в них меньше плотности вещества в фотосфере на том же уровне.

В активных областях С. наблюдаются факелы ≈ яркие фотосферные образования, видимые в белом свете преимущественно вблизи края диска С. Обычно факелы появляются раньше пятен и существуют некоторое время после их исчезновения. Площадь факельных площадок в несколько раз превышает площадь соответствующей группы пятен. Количество факелов на диске С. зависит от фазы цикла солнечной активности. Максимальный контраст (18%) факелы имеют вблизи края диска С., но не на самом краю. В центре диска С. факелы практически не видны, контраст их очень мал. Факелы имеют сложную волокнистую структуру, контраст их зависит от длины волны, на которой проводятся наблюдения. Температура факелов на несколько сот градусов превышает температуру фотосферы, общее излучение с 1 см2 превышает фотосферное на 3≈5%. По-видимому, факелы несколько возвышаются над фотосферой. Средняя продолжительность их существования ≈ 15 сут, но может достигать почти 3 мес.

Солнечная корона ≈ самая внешняя и наиболее разрежённая часть солнечной атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До 1931 корону можно было наблюдать только во время полных солнечных затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска С. (см. т. 9, вклейка к стр. 384≈385). В короне хорошо выделяются детали её структуры: шлемы, опахала, корональные лучи и полярные щёточки. После изобретения коронографа солнечную корону стали наблюдать и вне затмений. Общая форма короны меняется с фазой цикла солнечной активности: в годы минимума корона сильно вытянута вдоль экватора, в годы максимума она почти сферична. В белом свете поверхностная яркость солнечной короны в миллион раз меньше яркости центра диска С. Свечение её образуется в основном в результате рассеяния фотосферного излучения свободными электронами. Практически все атомы в короне ионизованы. Концентрация ионов и свободных электронов у основания короны составляет 109 частиц в 1 см3. Нагрев короны осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии происходит в нижней части короны, но благодаря высокой теплопроводности корона почти изотермична ≈ температура понижается наружу очень медленно. Отток энергии в короне происходит несколькими путями. В нижней части короны основную роль играет перенос энергии вниз благодаря теплопроводности. К потере энергии приводит уход из короны наиболее быстрых частиц. Во внешних частях короны большую часть энергии уносит солнечный ветер ≈ поток коронального газа, скорость которого растет с удалением от С. от нескольких км/сек у его поверхности до 450 км/сек на расстоянии Земли. температура в короне превышает 106К. В активных областях температура выше ≈ до 107К. Над активными областями могут образовываться т. н. корональные конденсации, в которых концентрация частиц возрастает в десятки раз. Часть излучения внутренней короны ≈ это линии излучения многократно ионизованных атомов железа, кальция, магния, углерода, кислорода, серы и др. химических элементов. Они наблюдаются и в видимой части спектра, и в ультрафиолетовой области. В солнечной короне генерируются радиоизлучение С. в метровом диапазоне и рентгеновское излучение, усиливающиеся во много раз в активных областях. Как показали расчёты, солнечная корона не находится в равновесии с межпланетной средой. Из короны в межпланетное пространство распространяются потоки частиц, образующие солнечный ветер. Между хромосферой и короной имеется сравнительно тонкий переходный слой, в котором происходит резкий рост температуры до значений, характерных для короны. Условия в нём определяются потоком энергии из короны в результате теплопроводности. Переходный слой является источником большей части ультрафиолетового излучения С. Хромосфера, переходный слой и корона дают всё наблюдаемое радиоизлучение С. В активных областях структура хромосферы, короны и переходного слоя изменяется. Это изменение, однако, ещё недостаточно изучено.

Солнечные вспышки. В активных областях хромосферы наблюдаются внезапные и сравнительно кратковременные увеличения яркости, видимые сразу во многих спектральных линиях. Эти яркие образования существуют от нескольких мин до нескольких ч. Они называются солнечными вспышками (прежнее название ≈ хромосферные вспышки). Вспышки лучше всего видны в свете водородной линии Нa, но наиболее яркие видны иногда и в белом свете. В спектре солнечной вспышки насчитывается несколько сотен эмиссионных линий различных элементов, нейтральных и ионизованных. Температура тех слоев солнечной атмосферы, которые дают свечение в хромосферных линиях (1≈2) ×104 К, в более высоких слоях ≈ до 107 К. Плотность частиц во вспышке достигает 1013≈1014 в 1 см3. Площадь солнечных вспышек может достигать 1015м3. Обычно солнечные вспышки происходят вблизи быстро развивающихся групп солнечных пятен с магнитным полем сложной конфигурации. Они сопровождаются активизацией волокон и флоккулов, а также выбросами вещества. При вспышке выделяется большое количество энергии (до 1010≈1011дж). Предполагается, что энергия солнечной вспышки первоначально запасается в магнитном поле, а затем быстро высвобождается, что приводит к локальному нагреву и ускорению протонов и электронов, вызывающих дальнейший разогрев газа, его свечение в различных участках спектра электромагнитного излучения, образование ударной волны. Солнечные вспышки дают значительное увеличение ультрафиолетового излучения С., сопровождаются всплесками рентгеновского излучения (иногда весьма мощными), всплесками радиоизлучения, выбросом корпускул высоких энергий вплоть до 1010эв. Иногда наблюдаются всплески рентгеновского излучения и без усиления свечения в хромосфере. Некоторые солнечные вспышки (они называются протонными) сопровождаются особенно сильными потоками энергичных частиц ≈ космическими лучами солнечного происхождения. Протонные вспышки создают опасность для находящихся в полёте космонавтов, т.к. энергичные частицы, сталкиваясь с атомами оболочки космического корабля, порождают тормозное, рентгеновское и гамма-излучение, причём иногда в опасных дозах.

Влияние солнечной активности на земные явления. С. является в конечном счёте источником всех видов энергии, которыми пользуется человечество (кроме атомной энергии). Это ≈ энергия ветра, падающей воды, энергия, выделяющаяся при сгорании всех видов горючего. Весьма многообразно влияние солнечной активности на процессы, происходящие в атмосфере, магнитосфере и биосфере Земли (см. Солнечно-земные связи ).

Инструменты для исследования С. Наблюдения С. ведутся с помощью рефракторов небольшого или среднего размера и больших зеркальных телескопов, у которых большая часть оптики неподвижна, а солнечные лучи направляются внутрь горизонтальной или башенной установки телескопа при помощи одного (сидеростат, гелиостат) или двух (целостат) движущихся зеркал (см. рис. к ст. Башенный телескоп ). При строительстве больших солнечных телескопов особое внимание обращается на высокое пространственное разрешение по диску С. Создан специальный тип солнечного телескопа ≈ внезатменный коронограф. Внутри коронографа осуществляется затмение изображения С. искусственной «Луной» ≈ специальным непрозрачным диском. В коронографе во много раз уменьшается количество рассеянного света, поэтому можно наблюдать вне затмения самые внешние слои атмосферы С. Солнечные телескопы часто снабжаются узкополосными светофильтрами, позволяющими вести наблюдения в свете одной спектральной линии. Созданы также нейтральные светофильтры с переменной прозрачностью по радиусу, позволяющие наблюдать солнечную корону на расстоянии нескольких радиусов С. Обычно крупные солнечные телескопы снабжаются мощными спектрографами с фотографической или фотоэлектрической регистрацией спектров. Спектрограф может иметь также магнитограф ≈ прибор для исследования зеемановского расщепления и поляризации спектральных линий и определения величины и направления магнитного поля на С. Необходимость устранить замывающее действие земной атмосферы, а также исследования излучения С. в ультрафиолетовой, инфракрасной и некоторых др. областях спектра, которые поглощаются в атмосфере Земли, привели к созданию орбитальных обсерваторий за пределами атмосферы, позволяющих получать спектры С. и отдельных образований на его поверхности вне земной атмосферы.

Лит.: Солнце, под ред. Дж. Койпера, пер. с англ., т. 1, М., 1957; Ягер К., Строение и динамика атмосферы Солнца, пер. с англ., М., 1962; Аллен К. У., Астрофизические величины, пер. с англ., М., 1960; Мустель Э. Р., Звездные атмосферы, М., 1960; Северный А. Б., физика Солнца, М., 1956; Зирин Г., Солнечная атмосфера, пер. с англ., М., 1969: Alien С. W., Astrophysical quantities, 3 ed., L., 1973.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *