Что значит следует за числом

Натуральные числа

Что значит следует за числом

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Мерзляк 5 класс — § 1. Ряд натуральных чисел

Вопросы к параграфу

Решаем устно

1. Сложите:

2. Вычтите:

3. Умножьте:

4. Разделите:

5. Около школы растут каштаны и тополя. Каштанов растёт семь, а тополей — в 3 раза больше. Сколько деревьев растёт около школы?

7 + 7 • 3 = 7 + 21 = 28 (деревьев) — растёт около школы.

6. В школе учатся 370 учеников. Найдутся ли среди них хотя бы два ученика, которые отмечают день рождения в один и тот же день?

Да, так как в году максимально может быть 366 дней (в високосный год).

370 > 366, значит у нескольких учеников дни рождения будут отмечаться в один и тот же день.

Упражнения

1. Назовите 14 первых натуральных чисел.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

В записи натурального ряда не хватает числа 8.

3. Из чисел 5, Что значит следует за числом, 8, 129, 0, Что значит следует за числом, 4 128, Что значит следует за числом— выберите натуральные.

4. Запишите число, которое в натуральном ряду следует за числом: 1) 34; 2) 246; 3) 8 297.

5. Запишите число, которое в натуральном ряду следует за числом: 1) 72; 2) 121; 3) 6 459.

6. Запишите число, которое в натуральном ряду является предыдущим числу: 1) 58; 2) 631; 3) 4 500.

7. Запишите число, которое в натуральном ряду является предыдущим числу: 1) 42; 2) 215; 3) 3 240.

8. Сколько чисел стоит в натуральном ряду между числами: 1) 6 и 24; 2) 18 и 81?

9. Сколько чисел стоит в натуральном ряду между числами: 1) 13 и 28; 2)29 и 111?

10. Некоторое натуральное число, большее 3, обозначили буквой а. Запишите для числа а два предыдущих и три последующих натуральных числа.

Если а — данное натуральное число, большее трёх, то первое предыдущее число для него будет (а — 1), а второе предыдущее — (а — 2). Три последующих числа будут записаны так: (а + 1), (а + 2) и (а + 3).

Проверка: Пусть а = 15. Тогда:

Упражнения для повторения

11. Вычислите:

Что значит следует за числом

12. Первое летописное упоминание о Москве встречается в Ипатьевской летописи в 1147 г. Сколько лет прошло от первого летописного упоминания Москвы?

Что значит следует за числом

Ответ: От первого летописного упоминания Москвы прошло 873 года.

13. Выполните действия:

Что значит следует за числом

14. Собираясь в гости к своей бабушке, Карлсон решил подкрепиться. Для этого на завтрак он съел 26 банок варенья, а на обед — на 16 банок больше. Сколько банок варенья съел Карлсон?

Что значит следует за числом

1) 26 + 16 = 42 (банки) — Карлсон съел на обед.

2) 26 + 42 = 68 (банок) — съел Карлсон

Ответ: Карлсон съел 68 банок варенья.

15. На одном участке растут 34 куста смородины, а на другом — на 18 кустов меньше. Сколько всего кустов смородины растёт на двух участках?

Что значит следует за числом

1) 34 — 18 = 16 (кустов) — растёт на втором участке.

2) 34 + 16 = 50 (кустов) — растёт на двух участках.

Ответ: На двух участках растёт 50 кустов.

Задача от мудрой совы

16. В квадрате (рис. 1) суммы чисел в каждом столбце, в каждой строке и диагоналях должны быть одинаковыми. Найдите число, которое должно быть записано вместо звёздочки.

Что значит следует за числом

1) Посчитаем сумму чисел в одном столбце. Все цифры у нас известны в первом столбце:

Это значит, что в кадом столбце, строке или диагонали сумма чисел должна равняться 33.

2) Рассмотрим вторую строку. У нас известно два числа и общая сумма. Найдём неизвестное число:

33 — (9 + 13) = 33 — 12 = 11 — число в середине второй строки.

3) Рассмотрим диагональ от нижнего левого угла до верхнего правого угла:

33 — (14 + 11) = 33 — 25 = 8 — число в верхнем правом углу.

4) Рассмотрим третий столбец:

33 — (8 + 13) = 33 — 21 = 12 — число в нижнем правом углу

5) Рассмотрим нижнюю строку:

33 — (14 + 12) = 33 — 26 = 7 — число в середине нижней строки.

6) Рассмотрим средний столбец:

33 — (11 + 7) = 33 — 18 = 15 — искомое число на месте звёздочки.

Ответ: На месте звёздочки надо написать число 15.

Что значит следует за числом

Комментарий: На самом деле для поиска искомого числа достаточно было выполнить первые три действия, а затем вычислить искомое рассмотрев верхнюю строчку. Остальные неизвестные, согласно заданию, искать было не обязательно.

Источник

Включается ли в период времени дата после предлогов «до» и «по»

Если в договоре для определения срока используется предлог «по», то дата после него включается в соответствующий срок. Эта позиция обусловлена тем, что при толковании условий договора суд принимает во внимание буквальное значение содержащихся в нем слов и выражений ( ч. 1 ст. 401 ГК). А по словарю русского языка С.И. Ожегова предлог «по» имеет несколько значений, в том числе указывает на меру времени или срок. Другими словами, предлог «по» перед датой подразумевает «включая эту дату».

Пример
В договоре указано, что товар должен быть оплачен в срок по 25.01.2021. В таком случае последний день для оплаты товара — 25.01.2021.
Стороны согласовали срок действия договора с 01.01.2021 по 28.02.2021. В этой ситуации последний день действия договора — 28.02.2021.

По поводу предлога «до» отсутствует единое мнение.

Одни считают, что использование предлога «до» исключает указанную после него дату из срока. Например, если указано «до 10.02.2021», то срок оканчивается 09.02.2021 в 24 часа 00 минут. Объясняется это тем, что по словарю русского языка С.И. Ожегова предлог «до» употребляется для указания на время, отделяющее одно событие от другого.

Вместе с тем есть и противоположная точка зрения — предлог «до» не исключает указанную после него дату из срока. Так, если указано «до 10.02.2021», то последний день срока — 10.02.2021. Такой позиции, например, придерживался ВХС в письме от 03.06.2005 N 03-24/1053.

На заметку
В Инструкции по делопроизводству установлено правило касательно предлога «до». Так, если срок исполнения документа определяется с использованием предлога «до», указанная за ним дата является крайней датой исполнения документа (подп. 146.4 п. 146). Однако Инструкция по делопроизводству устанавливает общие требования к документированию управленческой деятельности и организации работы с документами, т.е. не содержит требований к договорам (п. 1).

Следовательно, если в договоре для определения срока использован предлог «до», то может возникнуть спор.

Суд в таком случае будет устанавливать конечную дату срока путем сопоставления условия о сроке с другими условиями и смыслом договора в целом. Если это не поможет определить момент окончания срока, то суд будет выяснять действительную общую волю сторон с учетом цели договора. При этом будут приниматься во внимание все соответствующие обстоятельства, включая предшествующие договору переговоры и переписку, практику, установившуюся во взаимных отношениях сторон, последующее поведение сторон (ст. 401 ГК).

Во избежание споров рекомендуем добавлять слово «включительно» после указания даты. Это целесообразно делать как при использовании предлога «до», так и с предлогом «по». Также избежать разной трактовки срока можно, если использовать конструкцию «не позднее…».

Примеры формулировок в договоре
«Срок оплаты работ — до 10.02.2021 включительно.»
«Срок действия настоящего договора с 01.01.2021 по 20.03.2021 включительно.»
«Товар по настоящему договору должен быть поставлен не позднее 29.01.2021.»

Читайте этот материал в ilex >>*
*по ссылке Вы попадете в платный контент сервиса ilex

Источник

Разряды и классы чисел

Что значит следует за числом

Числа и цифры

Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.

Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

От количества цифр в числе зависит его название.

Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.

Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.

Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.

Каждая цифра в записи многозначного числа занимает определенное место — позицию.

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

Что значит следует за числом

Названия классов многозначных чисел справа налево:

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

А теперь прочитаем число единиц каждого класса слева направо:

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Что значит следует за числом

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Разрядные единицы обозначают так:

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши курсы по математике!

Потренируемся

Пример 1. Записать цифрами число, в котором содержится:

Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.

Пример 2. Сколько сотен содержится в числе 6284?

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.

Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.

Значит, в данном числе содержится 62 сотни.

Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.

Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.

Источник

«Уплатить до 30-го…» — это значит включая указанный день или нет?

Что значит следует за числом

Многие региональные и местные НПА при установлении сроков уплаты налогов и авансовых платежей грешат такими формулировками, как «срок уплаты до такого-то числа». И тогда непонятно, можно ли внести платеж в указанный день или срок уплаты заканчивается накануне. Налоговики часто этим пользуются и наказывают тех, кто рассчитывается с бюджетом в указанную дату, пенями за этот день. Аргумент таков: формулировка «до определенной даты» означает, что действие должно быть совершено к установленной дате. Следовательно, предельным сроком для уплаты является день, предшествующий указанному.

Однако суды считают, что такой подход контролеров не верен.

Так, Конституционный суд в определении от 04.07.2002 № 185-О сказал, что для налоговых целей формулировки «ежемесячно до 15-го числа за прошедший месяц» и «ежемесячно не позднее 15-го числа месяца, следующего за отчетным месяцем» являются равнозначными.

Верховный суд в определении от 16.10.2018 № 304-КГ18-7786 также разрешил этот вопрос в пользу налогоплательщика. Он указал, что формулировка срока уплаты налога «до 30 апреля» не позволяет достоверно и без неустранимых сомнений определить, является предельным сроком для исполнения данной обязанности 29 либо 30 апреля. А поскольку все неустранимые сомнения, противоречия и неясности налоговых НПА должны толковаться в пользу налогоплательщика (п. 7 ст. 3 НК РФ), крайним сроком в данном случае следует считать 30-е число.

Высказывался по теме и Минфин. Он рекомендовал руководствоваться позицией судов. По крайней мере до тех пор, пока в НК не будут внесены изменения, предусматривающие иное (письмо от 30.04.2019 № 03-02-08/32422).

Сдвигает ли срок уплаты налога региональный праздник, см. здесь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *