Что значит скалярная величина и векторная

Два вида физических величин: скалярные величины и векторные величины

«Что-то я не помню такой темы в физике» — первое, что, наверное, пришло вам в голову. Да, вы правы — тема незаметная, но в некоторых учебниках она присутствует. «А нужна она мне для ЕГЭ?» Нужна. Точно нужна. Очень нужна. Постоянно нужна.

Давайте приступим. Надо запомнить, что в физике (школьной) есть два типа физических величин:

Векторная величина. Что это такое? Давайте вспомним (а для тех, кто не знал — узнаем), что

Что значит скалярная величина и векторная

Направление вектора изображается на картинке. Куда показывает вектор — туда он и направлен. Например, бывает так, что вектор направлен вверх, вниз и т.д. Вектор может быть направлен вдоль какой-то плоскости. Примеры можете видеть на картинках.

Ну, самое простое — это опыт. Решая задачи, читая теоретический материал, вы со временем запомните, какие величины векторные, а какие скалярные. Физических величин не так много, как может показаться.

А способ чуть посложнее — это представить эти величины и решить для себя: могут они иметь направление? Если да — то это вектор, если нет — скаляр.

Например: заряд конденсатора. Если заряд имеет направление, то куда он направлен? Непонятно — поэтому, скорее всего, заряд — это скалярная величина.

Другой пример: длина отрезка. Если эта физическая величина имеет направление, то откуда куда она направлена: от точки 1 до точки 2? Или от точки 2 до точки 1? Трудно выбрать — поэтому, скорее всего, длина отрезка — это скаляр.

Что значит скалярная величина и векторная

Какие из представленных на рисунках величин являются скалярными, а какие — векторными?

Источник

Скалярные и векторные величины

Что значит скалярная величина и векторная Что значит скалярная величина и векторная Что значит скалярная величина и векторная Что значит скалярная величина и векторная

Что значит скалярная величина и векторная

Что значит скалярная величина и векторная

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Что значит скалярная величина и векторнаяВекторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

— вектор скорости обозначается символом Что значит скалярная величина и векторная,

— вектор ускорения обозначается символом Что значит скалярная величина и векторная,

— вектор силы обозначается символом Что значит скалярная величина и векторная.

Модуль вектора обозначается так:

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.

Что значит скалярная величина и векторная

Действия с векторами

Математические действия с векторными величинами – это геометрические действия.

Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

Противоположные векторы. Два вектора противоположны, если они имеют:

Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора Что значит скалярная величина и векторнаяи Что значит скалярная величина и векторная(см. рис.). Найдем сумму этих векторов Что значит скалярная величина и векторная+ Что значит скалярная величина и векторная= Что значит скалярная величина и векторная. Величины Что значит скалярная величина и векторнаяи Что значит скалярная величина и векторная— это составляющие векторы, вектор Что значит скалярная величина и векторная— это результирующий вектор.

Правило параллелограмма для сложения двух векторов:

Что значит скалярная величина и векторная1. Нарисуем вектор Что значит скалярная величина и векторная.

2. Нарисуем вектор Что значит скалярная величина и векторнаятак, что его начало совпадает с началом вектора Что значит скалярная величина и векторная; угол между векторами равен Что значит скалярная величина и векторная(см. рисунок).

3. Через конец вектора Что значит скалярная величина и векторнаяпроведем прямую линию, параллельную вектору Что значит скалярная величина и векторная.

4. Через конец вектора Что значит скалярная величина и векторнаяпроведем прямую линию, параллельную вектору Что значит скалярная величина и векторная.

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы Что значит скалярная величина и векторнаяи Что значит скалярная величина и векторная.

5. Проведем диагональ параллелограмма из общей точки начала вектора Что значит скалярная величина и векторнаяи начала вектора Что значит скалярная величина и векторная.

6. Модуль результирующего вектора Что значит скалярная величина и векторнаяравен длине диагонали параллелограмма и определяется по формуле:

Что значит скалярная величина и векторная;

начало вектора Что значит скалярная величина и векторнаясовпадает с началом вектора Что значит скалярная величина и векторнаяи началом вектора Что значит скалярная величина и векторная(направление вектора Что значит скалярная величина и векторнаяпоказано на рисунке).

Правило треугольника для сложения двух векторов:

Что значит скалярная величина и векторнаяЧто значит скалярная величина и векторная

1. Нарисуем составляющие векторы Что значит скалярная величина и векторнаяи Что значит скалярная величина и векторнаятак, что начало вектора Что значит скалярная величина и векторнаясовпадает с концом вектора Что значит скалярная величина и векторная. При этом угол между векторами равен Что значит скалярная величина и векторная.

2. Результирующий вектор Что значит скалярная величина и векторнаянаправлен так, что его начало совпадает с началом вектора Что значит скалярная величина и векторная, а конец совпадает с концом вектора Что значит скалярная величина и векторная.

3. Модуль результирующего вектора находим по формуле:

Что значит скалярная величина и векторная

Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Что значит скалярная величина и векторная

Найти разность вектора Что значит скалярная величина и векторнаяи вектора Что значит скалярная величина и векторная— это тоже самое, что найти сумму вектора Что значит скалярная величина и векторнаяи вектора Что значит скалярная величина и векторная, противоположного вектору Что значит скалярная величина и векторная. Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

Источник

Скаляры и векторы: что это такое

Что значит скалярная величина и векторная

В физике используется много различных математических величин. Например, ускорение, скорость, сила, работа, мощность и так далее. Ученые делят эти величины на два типа: «скалярные» и «векторные». Что же означают эти типы и чем они отличаются?

Скаляр – это величина, которая описывается только значением. Значение этой величины выражает только число. Примеры скалярных величин: скорость, объем, масса, температура, мощность, энергия, время и т.д. Более о скорости читайте в учебнике по физике за 7 класс В.Г. Баряхтяра.

Вектор – это величина, которая имеет как значение, так и направление. Векторные величины важны при изучении движения. Некоторые примеры векторных величин: сила, скорость, ускорение, перемещение и импульс.

Что значит скалярная величина и векторная

Вектор имеет и направление, и значение, а скаляр имеет только значение. Вы можете сказать, является ли величина вектором, просто если поймете, имеет ли эта величина направление.

Как нарисовать вектор?

Вектор нарисован в виде стрелки с головой и хвостом. Величину вектора часто описывают длиной стрелки. Стрелка указывает в направлении вектора.

Векторы обычно пишутся в виде жирных букв. Они также могут быть написаны в виде стрелки над буквой.

Пример вопросов: скаляр или вектор?

1) Футболист бежал со скоростью 15 км в час по направлению к концу зоны.

Это вектор, так как он представляет и значение (15 км/ч) и направление (по направлению к концу зоны).

2) Температура помещения составляет 15 градусов по Цельсию.

Это скаляр, направления нет.

3) Автомобиль разогнался на север со скоростью 4 м/с2 (четыре метра в секунду в квадрате).

Это вектор, поскольку он имеет как направление, так и величину. Мы также знаем, что ускорение – это векторная величина.

Источник

Что значит скалярная величина и векторная

В физике существуют скалярные величины (скаляры) и векторные величины (векторы). Хотя, правильнее в последнем случае все-таки говорить векторная величина, часто говорят, например, «вектор скорости».

Что значит скалярная величина и векторная

Чтобы совсем запутаться, рекомендую обратиться к Википедии: https://ru.wikipedia.org/wiki/Векторная_величина.

Для нас важно понять два момента:

1) Примерами скаляров являются: длина, площадь, время, масса, плотность, температура и т.п.

Для наших задач достаточно понимания скаляра, как величины (числа с размерностью) без направления.

2) Под вектором мы будем понимать направленный отрезок. То есть три числа (мы ведь живем в трехмерном пространстве), которые преобразуются по определенным правилам при переходе от одной системы координат к другой.

Попробуем обойтись без математических формул этих правил. Просто представим в нашем трехмерном пространстве направленный отрезок. Некую стрелку, которая, для простоты, неподвижна, неизменна, и имеет направление от одного конца к другому. Или даже представим, что у нас есть определенная операция перемещения в пространстве. У нее есть величина (расстояние перемещения по прямой из начальной точки в конечную) и направление.

Что значит скалярная величина и векторная

И представим систему координат (например, прямоугольную), которая неподвижна относительно нас, и начало отсчета которой совпадает с началом нашего направленного отрезка.

Отлично! Тогда координаты «заостренного» конца нашего «направленного» отрезка с началом в точке (0,0,0) в этой системе координат будут выражаться тремя числами (Ах, Аy, Аz). Будет ли эта тройка чисел вектором?

Теперь мы берем и поворачиваем произвольно нашу систему координат (но пока не сдвигаем начало координат). Тогда в новой системе координат координаты нашего вектора будут x’, Аy’, Аz’). Заметьте, сам наш вектор (направленный отрезок в трехмерном пространстве) не изменился. Как бы мы не вращали систему координат, тройка чисел будет меняться, но вектор (в смысле направленного отрезка) останется на своем месте. Он смотрит в одну и ту же «точку вселенной». О как! И длина его не меняется из-за вращения системы координат.

А теперь вывод. То, что важно для физики!

Формулы можно посмотреть у Фейнмана или еще где-нибудь. Они пока для понимания не столь важны. А важно следующее!

Теперь посмотрим, что есть что.

Путь вектор или скаляр? Скаляр. Почему?

Далее сами перебираем физические величины и определяем, что есть скаляр, а что вектор!

Источник

Скалярные и векторные величины в физике и математике

Что значит скалярная величина и векторная

Особенности скалярных величин

Скалярные величины характеризуются только одним параметром — числовым значением. Они разделяются на 2 вида:

В физике в список скалярных величин входят:

Что значит скалярная величина и векторная

Что значит скалярная величина и векторная

Если скаляры выражают одно единственное свойство физического тела, то они называются однородными. Величины, описывающие несколько свойств объекта, именуются разнородными. Однородные скаляры сравнимы: они либо равны, либо одна из них больше или меньше другой. Но скалярные величины разного рода не могут сравниваться друг с другом.

Определение положительного скаляра и его измерения

Понятие положительной скалярной величины и ее измерения позволяет сравнивать между собой однородные скаляры. Положительная скалярная величина способна принимать значения строго выше 0. Она обозначается знаком «+». Если величина может принимать значения меньше 0, то она называется отрицательной и обозначается символом «-«. Большинство скаляров могут быть только положительными. Для их расчета используют единицы измерения — фиксированного размера объекта.

Чтобы получить скалярную величину, достаточно умножить ее числовое значение на ее единицу измерения. Для структуризации и стандартизации вычислений физических параметров тела была разработана Международная система СИ. Она устанавливает единицы измерения для каждой величины. Во время проведения расчетов скалярных величин применяют алгебраические действия — сложение, вычитание, деление и умножение (отдельный подвид — возведение в степень).

Что значит скалярная величина и векторная

Особенности векторных величин

Их определение: «В физике векторными величинами называются свойства материи, характеризующиеся несколькими параметрами: модулем и направлением». Модулем вектора будет являться числовое значение величины, никогда не принимающее отрицательных значений. Он обозначается символом «||». Для обозначения направления используется стрелка, располагающаяся над символом вектора.

В физике и математике примерами векторных величин являются:

Что значит скалярная величина и векторная

На графиках функции векторные величины изображаются в виде прямой линии, имеющей направление и свои собственные координаты в заданном масштабе.

Свойства векторов

Вектор — математический элемент, представляющий собой прямой отрезок с направлением. Он обозначается либо 2 заглавными латинскими буквами, либо одной прописной. Длиной вектора является его модуль. Если длина вектора равняется 0, то он называется нулевым. Вектор, имеющий длину 1 см, именуется единичным. Длина ненулевого вектора выражается в виде расстояния между началом и концом направленного отрезка. Проекцией вектора на ось является строго положительный отрезок, сонаправленный с исходной осью. Свойства проекции:

Что значит скалярная величина и векторная

Коллинеарные векторы — отрезки, располагающиеся либо на одной прямой, либо на параллельных прямых. Нулевой вектор коллинеарен всегда. Если коллинеарные векторы направлены в одну сторону, то они называются сонаправленными. Если отрезки направлены в диаметрально противоположные стороны, то они называются противоположно направленными. Коллинеарные векторы являются равными, если они одинаковы по модулю и направлению.

Построение отрезков с направлением на плоскости осуществляется при помощи его координат для осей абсцисса и ордината. Для изображения направленного отрезка необходимо построить точки, координаты которых соответствуют началу и концу вектора, и соединить их.

Что значит скалярная величина и векторная

С векторами также можно производить операции сложения, деления, вычитания и умножения. Чтобы сложить два вектора, необходимо от произвольной точки на плоскости отложить первый направленный отрезок и от него отложить второй вектор. Отрезок, соединяющий начало первого вектора и конец второго, будет считаться их суммой. Этот способ сложения именуется методом треугольника.

Вторым способом нахождения суммы векторов является метод параллелограмма. От произвольной точки откладываются оба направленных отрезка. Полученный рисунок нужно достроить до параллелограмма. Диагональ фигуры будет являться суммой векторов.

Для осуществления вычитания необходимо отложить от произвольной точки первый вектор. От полученного отрезка откладывается следующий вектор. Второй отрезок нужно направить в противоположную сторону. Линия, соединяющая отрезки, будет являться разностью векторов.

С векторами также можно проводить операцию умножения. Произведение длин направленных отрезков на косинус угла между ними называется скалярным. В результате вычислений получается число — скаляр. Скалярное произведение равно 0 в случае, когда отрезки пересекаются под углом 90°. Зная скалярное произведение, человек сможет найти косинус угла между построенными векторами.

Полученные в результате выполнения алгебраических операций выражения применяются для исследования перемещения тел вокруг оси вращения и изучения элементов высшей математики. Также направленные отрезки нашли широкое применение в геометрии и астрономии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *