Что значит решить уравнение методом введения новой переменной

Решение уравнений методом введения новой переменной, теория, практика

В этой статье мы всесторонне разберем метод введения новой переменной. Здесь мы выясним, для решения каких уравнений этот метод предназначен, проникнем в его суть, приведем обоснование метода, доказав соответствующее утверждение, запишем алгоритм решения уравнений методом введения новой переменной и рассмотрим решения характерных примеров.

Когда применяется и в чем суть метода

В основе метода введения новой переменной лежит следующее утверждение:

Приведем обоснование озвученного утверждения в следующем пункте.

Обоснование

Докажем утверждение, лежащее в основе метода введения новой переменной, которое мы привели в предыдущем пункте. Для этого нужно доказать два момента:

Первая часть доказана. Переходим к доказательству второй части утверждения.

Так доказана вторая часть утверждения и все утверждение в целом.

Алгоритм решения уравнений методом введения новой переменной

Приведенная выше информация позволяет записать алгоритм решения уравнения f(g(x))=0 методом введения новой переменной:

Решение примеров

Продвигаясь дальше в школьном курсе математики по пути знакомства с уравнениями, нам встречаются иррациональные, тригонометрические, показательные, логарифмические и другие уравнения, и каждый раз мы возвращаемся к методу введения новой переменной для их решения. Для уравнений каждого вида есть свои особенности в плане введения новой переменной. Рекомендуем ознакомиться с ними в следующих материалах:

В заключение покажем пример решения уравнения, которое после введения новой переменной имеет бесконечное множество решений. Подобные случаи встречаются крайне редко, и тем они еще более интересны. В них главное разобраться с особенностями возврата к старой переменной.

Решите уравнение Что значит решить уравнение методом введения новой переменной

Источник

Замена переменных в уравнениях (ЕГЭ 2022)

Метод замены переменных… Что это за зверь?

Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.

Есть три способа замены переменной.

Читай эту статью — ты все поймешь!

Замена переменных — коротко о главном

Определение:

Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.

Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.

Виды замены переменной:

Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<^>\).

Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<

_>\left( x \right)><<_>\left( x \right)>\), где \( \displaystyle <

_>\left( x \right)\) и \( \displaystyle <_>\left( x \right)

\) – многочлены степеней n и m, соответственно.

Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=<

_>\left( x \right)\) или \( \displaystyle t=\sqrt<<

_>\left( x \right)>\), где \( \displaystyle <

_>\left( x \right)

\) – многочлен степени \( \displaystyle n\).

Обратная замена:

После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену.

Степенная замена \( \displaystyle y=<^>\)

Решение примера №1

Допустим, у нас есть выражение: \( \displaystyle <^<4>>-5<^<2>>-36=0\).

Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду.

Введем новую переменную \( \displaystyle t=<^<2>>\).

Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\).

Наше выражение приобретет вид:

\( \displaystyle <^<2>>-5t-36=0\) – обычное квадратное уравнение

Нашли ли мы корни исходного уравнения? Правильно, нет.

На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\).

Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle <^<2>>\).

Решаем два новых простых уравнения, не забывая область допустимых значений!

При \( \displaystyle <^<2>>=9\) у нас будет два корня:

\( \displaystyle <_<1>>=3\) \( \displaystyle <_<2>>=-3\)

А что у нас будет при \( \displaystyle <^<2>>=-4\)?

Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle <^<2>>=-4\) у нас будет пустое множество (решения нет).

В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют:

Точно таким же образом необходимо действовать при решении неравенств.

Выполняя замену переменных, необходимо помнить два простых правила:

Решение примера №2

Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3<^<6>>-7<^<3>>+2=0\).

Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни?

Проверь свое решение:

Введем новую переменную \( \displaystyle t=<^<3>>\).

Наше выражение приобретет вид:

\( \displaystyle 3<^<2>>-7t+2=0\) – обычное квадратное уравнение

Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle <^<3>>\)

Оба значения \( \displaystyle <^<3>>\) имеют право на существование. Решаем два получившихся уравнения:

При \( \displaystyle <^<3>>=2\Rightarrow x=\sqrt[3]<2>\)

Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\)

Степенная замена в общем виде

Например, с помощью замены \( \displaystyle t=<^<2>>\) биквадратное уравнение \( \displaystyle a<^<4>>+b<^<2>>+c=0,\text< >a\ne 0\) приводится к квадратному: \( \displaystyle a<^<2>>+bt+c=0\).

В неравенствах все аналогично.

Например, в неравенстве \( \displaystyle a<^<6>>+b<^<3>>+c\ge \text<0>\) сделаем замену \( \displaystyle t=<^<3>>\), и получим квадратное неравенство: \( \displaystyle a<^<2>>+bt+c\ge \text<0>\).

Дробно-рациональная замена

Дробно-рациональная замена – \( \displaystyle y=\frac<<

_>\left( x \right)><<_>\left( x \right)>,

\) многочлены степеней n и m соответственно.

При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle <_>\left( x \right)\ne 0\) (так как на ноль делить нельзя).

Решение примера №3

Допустим, у нас есть уравнение:

Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\)

Введем новую переменную \( \displaystyle t\).

Пусть \( \displaystyle t=x+\frac<3>\), тогда

Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь?

Что значит решить уравнение методом введения новой переменной

Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых.

Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\).

\( \displaystyle 2\cdot \frac<3><>=6\)

В итоге мы получаем следующее выражение:

\( \displaystyle <^<2>>-6-t-14=0\) – обычное квадратное уравнение.

Решаем получившееся уравнение:

Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной:

Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений:

Решим первое квадратное уравнение:

На этой стадии не забываем про ОДЗ.

Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения.

Решим второе квадратное уравнение:

Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ.

Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\!

У тебя получился такой же?

Попробуй решить все с начала до конца самостоятельно.

Решение пример №4

Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\).

Сравним ход решения:

Пусть \( \displaystyle t=\frac<1><<<\left( -2 \right)>^<2>>>\), тогда выражение приобретает вид:

Приведем слагаемые к общему знаменателю:

Не забываем про ОДЗ — \( \displaystyle t\ne 0\).

Решаем квадратное уравнение:

Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной:

Решим первое уравнение:

Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\).

Решим второе уравнение:

Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( -2 \right)>^<2>>>=-\frac<1><5>\) – число положительное, \( \displaystyle <<\left( -2 \right)>^<2>>\) — тоже всегда положительно, следовательно, при делении положительного числа на положительное никак не может получиться отрицательное!

Ответ: \( \displaystyle 1\); \( \displaystyle 3\)

Дробно-рациональная замена в общем виде

\( \displaystyle <

_>\left( x \right)\) и \( \displaystyle <_>\left( x \right)\) − многочлены степеней \( \displaystyle n\) и \( \displaystyle m\) соответственно.

Например, при решении возвратных уравнений, то есть уравнений вида

обычно используется замена \( \displaystyle t=x+\frac<1>\).

Сейчас покажу, как это работает.

Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию.

Разделим уравнение на \( \displaystyle <^<2>>\ne 0\):

Теперь делаем замену: \( \displaystyle t=x+\frac<1>\).

Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x:

Вернемся к нашему уравнению:

\( \displaystyle \begina\left( <^<2>>+\frac<1><<^<2>>> \right)+b\left( x+\frac<1> \right)+c=0\text< >\Leftrightarrow \text< >a\left( <^<2>>-2 \right)+bt+c=0\text< >\Leftrightarrow \\a<^<2>>+bt+c-2a=0\end\)

Теперь достаточно решить квадратное уравнение и сделать обратную замену.

Замена многочлена

Замена многочлена \( \displaystyle y=<

_>\left( x \right)\) или \( \displaystyle y=\sqrt<<

_>\left( x \right)>\).

Здесь \( \displaystyle <

_>\left( x \right)

\) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12<^<3>>+2<^<2>>-3x+1\) – многочлен степени \( \displaystyle 3\).

Решение примера №4

Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)?

Уравнение приобретает вид:

Производим обратную замену переменных:

Решим первое уравнение:

Решим второе уравнение:

\( \displaystyle <<>^<2>>-4+8=0\) \( \displaystyle \text=<<>^<2>>-4\) \( \displaystyle \text=16-4\cdot 8=16-32=-16\)

Решил? Теперь проверим с тобой основные моменты.

За \( \displaystyle t\) нужно взять \( \displaystyle 2<<>^<2>>-9+5\).

Мы получаем выражение:

\( \displaystyle \text\cdot \left( \text+1 \right)=2\)

Далее делаем обратную замену и решаем оба квадратных уравнения.

Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\)

Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\).

Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\)

Замена многочлена в общем виде

\( \displaystyle t=<

_>\left( x \right)\) или \( \displaystyle t=\sqrt<<

_>\left( x \right)>\).

Здесь \( \displaystyle <

_>\left( x \right)\) − многочлен степени \( \displaystyle n\), т.е. выражение вида

(например, выражение \( \displaystyle 4<^<4>>+2<^<3>>-3x+1\) – многочлен степени \( \displaystyle 4\), то есть \( \displaystyle <

_<4>>\left( x \right)\)).

Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a<^<2>>+bx+c\) или \( \displaystyle t=\sqrt^<2>>+bx+c>\).

Подведем итоги

Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах:

Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень.

Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное.

Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную.

Важные советы при введении новой переменной

Разбор 3 примеров на замену переменных

Пример 7. \( \displaystyle \left( <<>^<2>>-4+7 \right)\left( <<>^<2>>-4+6 \right)=12\)

Решение примера №6

Пусть \( \displaystyle \text=<<>^<3>>\), тогда выражение приобретает вид \( \displaystyle <^<2>>+7\text-8=0\).

Так как \( \displaystyle \text=<<>^<3>>\), то может быть как положительным, так и отрицательным.

Решение примера №7

Пусть \( \displaystyle \text=<<>^<2>>-4+7\), тогда выражение приобретает вид \( \displaystyle \text\cdot \left( \text-1 \right)=12\).

\( \displaystyle <<\text>_<2>>=-3\Rightarrow \) решения нет, так как \( \displaystyle D

Решение:

Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных.

Все станет намного проще после замены: \( \displaystyle t=<^<3>>\). Тогда \( \displaystyle <^<6>>=<^<2>>\):

Теперь делаем обратную замену:

Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\).

Решение примера 10 (замена многочлена)

Решите уравнение \( \displaystyle \left( <^<2>>+5x+9 \right)\left( <^<2>>+5x+10 \right)=12\).

Решение:

И опять используется замена переменных \( \displaystyle t=<^<2>>+5x+9\). Тогда уравнение примет вид:

\( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< ><^<2>>+t-12=0\).

Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них:

\( \displaystyle t=-4\text< >\Rightarrow \text< ><^<2>>+5x+9=-4\text< >\Rightarrow \text< ><^<2>>+5x+13=0\);

\( \displaystyle D=<<5>^<2>>-4\cdot 13=-17 Что значит решить уравнение методом введения новой переменной

\( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\)

Источник

Решение уравнения методом введения новой переменной

Математика. Уравнения. 283гр. Дистанционное обучение.

Просмотр содержимого документа
«Решение уравнения методом введения новой переменной»

21.04.20. Задание: Записать конспект и решить уравнения

Тема: Основные приемы решения уравнений:

Решение уравнения методом введения новой переменной

Метод введения новой переменной:

1. в уравнении какая-то его часть заменяется другой переменной (a, y, t. )

(прежнее неизвестное одновременно с новым в уравнении быть не может);

2. решается новое уравнение;

3. возвращаются к обозначенному и, используя полученное число (корни), вычисляют требуемое неизвестное.

Пример: Решить уравнение (2x−21) 2 −5(2x−21)+4=0.

Это уравнение можно решить и без использования новой переменной (раскрываются скобки по формуле разности квадратов и т. д.), но решение будет длинным и с большими числами.

Используем то, что обе скобки равны.

Обозначаем 2x−21=y. Получается простое квадратное уравнение:

Возвращаемся к обозначенному:

Методом введения новой переменной решаются биквадратные уравнения:

ax 4 +bx 2 +c=0, где a,b,c ∈R; x 2 =y; ay 2 +by+c=0. В биквадратных уравнениях всегда используется новая переменная. Получается квадратное уравнение

Пример: Решить уравнение:

x 4 −13x 2 +12=0; x 2 =y, тогда

1)x 2 =12; или 2) x 2 =1,

Задание: Решить уравнения 1. (3x−4) 2 +3 (3x−4)-4=0.

Источник

Памятка «Использование метода введения новой переменной»

Приемы решения дробных рациональных уравнений.

Использование алгоритма решения дробных рациональных уравнений.

При решении дробных рациональных уравнений целесообразно поступать по следующему алгоритму:

1. найти общий знаменатель дробей, входящих в уравнение, предварительно разложив знаменатели на множители;

2. умножить обе части уравнения на общий знаменатель;

3. решить получившееся целое уравнение;

4. исключить из его корней те, которые обращают в нуль общий знаменатель.

Что значит решить уравнение методом введения новой переменнойНОЗ: 2х(2 – х)

Что значит решить уравнение методом введения новой переменной

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Если х = 2, то 2х(2 – х) = 2·2(2 – 2) = 0, не является корнем уравнения.

Если х = 4, то 2х(2 – х) = 2·4(2 – 4) ≠ 0.

Ответ: 4 (с учетом проверки).

Использование условия равенства дроби нулю для уравнений вида Что значит решить уравнение методом введения новой переменной.

Решение уравнений основано на следующем утверждении: дробь Что значит решить уравнение методом введения новой переменной равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель отличен от нуля (на 0 делить нельзя!).

Решение уравнения вида Что значит решить уравнение методом введения новой переменнойпроводится в два этапа:

2. выяснить для каждого корня, обращается ли при найденном значении переменной х знаменатель дроби g(x) в нуль;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной; Что значит решить уравнение методом введения новой переменной;

2. Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если х = 1; то 9х – 13,5 = 9·1 – 13,5 ≠ 0;

Если х = 1,5; то 9х–13,5= 9·1,5–13,5=13,5-13.5=0, не является корнем уравнения.

Ответ: 1 (с учетом проверки).

Использование основного свойства пропорции для уравнений вида Что значит решить уравнение методом введения новой переменной.

Решение уравнений основано на следующем утверждении: в пропорции Что значит решить уравнение методом введения новой переменнойпроизведение крайних членов равно произведению ее средних членов. Т.е. ad = bc .

Решение уравнения вида Что значит решить уравнение методом введения новой переменнойпроводится в два этапа:

2. выяснить для каждого корня, обращаются ли при найденном значении переменной х знаменатели дробей g(x) и q(x) в нуль;

3. если g(x)=0 или q(x)=0, то полученный корень уравнения f(x)·q(x)= g(x)·p(x) не является корнем исходного уравнения.

Что значит решить уравнение методом введения новой переменной;

х 2 – 4х – 2х + 8 = х 2 + 3х + 2х + 6;

Что значит решить уравнение методом введения новой переменной.

2. Выполним проверку (не обращает ли найденный корень в нуль знаменатели дробей).

Если Что значит решить уравнение методом введения новой переменной; то х + 2 = Что значит решить уравнение методом введения новой переменной+ 2 ≠ 0;

Ответ: Что значит решить уравнение методом введения новой переменной(с учетом проверки).

Использование метода введения новой переменной.

Дробные рациональные уравнения решаются с помощью введения новой переменной.

Что значит решить уравнение методом введения новой переменной;

Введем новую переменную, обозначив х 2 + 2х – 3 через у. Тогда исходное уравнение сведется к уравнению с переменной у.

Пусть у = х 2 + 2х – 3, тогда х 2 + 2х – 8 = (х 2 + 2х – 3) – 5 = у – 5 и уравнение примет вид

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной;

Что значит решить уравнение методом введения новой переменной; Что значит решить уравнение методом введения новой переменной;

Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если у = 12,5; то у – 5 = 12,5 – 5 ≠ 0.

Т.к. у = х 2 + 2х – 3, то получим уравнения:

Решая уравнение х 2 + 2х – 3 = 12,5; получим:

Что значит решить уравнение методом введения новой переменной; Что значит решить уравнение методом введения новой переменной.

Т.о. найдены четыре корня заданного уравнения.

Что значит решить уравнение методом введения новой переменной

Что значит решить уравнение методом введения новой переменной

Что значит решить уравнение методом введения новой переменной

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Что значит решить уравнение методом введения новой переменной

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

Что значит решить уравнение методом введения новой переменной

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Ищем педагогов в команду «Инфоурок»

Что значит решить уравнение методом введения новой переменной

Номер материала: ДВ-184856

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Что значит решить уравнение методом введения новой переменной

Путин поручил не считать выплаты за классное руководство в средней зарплате

Время чтения: 1 минута

Что значит решить уравнение методом введения новой переменной

Дума приняла закон о бесплатном проживании одаренных детей в интернатах при вузах

Время чтения: 1 минута

Что значит решить уравнение методом введения новой переменной

В России утвердили новый порядок формирования федерального перечня учебников

Время чтения: 1 минута

Что значит решить уравнение методом введения новой переменной

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

Что значит решить уравнение методом введения новой переменной

Минтруд представил проект программ переобучения безработных на 2022 год

Время чтения: 2 минуты

Что значит решить уравнение методом введения новой переменной

В Петербурге школьникам разрешили уйти на каникулы с 25 декабря

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *