Что значит решить рациональным способом

Рациональные способы вычислений

Что значит решить рациональным способом

Описание презентации по отдельным слайдам:

Описание слайда:

Формирование вычислительных навыков.
Рациональные способы вычислений.

Автор: Карпенко Л.П.
Учитель школы 175
г.Зеленогорск
9.01.2009г.

Автор: Карпенко Л.П.,
учитель школы 175
г.Зеленогорск
9.01.2009г.

Описание слайда:

Что мы знаем о способах?
способы
позволяют
решать
быстрее
проще
легче
какие
!
!
где
применять
при
решении
примеров
при
решении
уравнений
при
устном
счете
2

Описание слайда:

Одной из важнейших задач обучения математике младших школьников является формирование у них вычислительных навыков, основу которых составляет осознанное и прочное усвоение приёмов устных и письменных вычислений.
Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, являясь фундаментом изучения математики и других учебных дисциплин. Её основы закладываются в начальной школе.
правильность
рациональность
обобщённость
автоматизм
прочность
осознанность
Характеристики вычислительного навыка:
3

Описание слайда:

Остановимся более подробно на таком качестве вычислительного навыка как рациональность, которая напрямую связана с вариативностью.

Рациональность вычислений – это выбор тех вычислительных операций из возможных. «выполнение которых легче других и быстрее приводит к результату арифметического действия».
Знакомство с рационализацией вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Применение свойств арифметических действий позволяет учителю воспитывать интерес к математике, вызвать у детей желание научиться вычислять наиболее быстрыми и удобными способами. Такой подход позволит поддерживать стремление к использованию математических знаний в повседневной жизни.

Описание слайда:

Рациональные способы вычислений
«-»
3х498-498х2=

«+»
2х8+2х752=
ахb+aхc=aх(b+c)
«+»
(250+25)х4=
«-»
9х(70-2)=
способы
1.Сочетальное
св-во умн
2х(50х364)=
2.Сочетательное
св-во сложения
14+(16+307)=
3,4.Вынесение общего
множителя за скобку

5,6.раскрытие
скобок
7.Представление
суммы в виде
произведения
47+47+47+47=47х4
8.св-во вычитания
суммы из числа
798-(498+16)=
9.св-во вычитания
числа из суммы
(658+27)-58=
5

Описание слайда:

Счётное пособие –абак.

Описание слайда:

Учись считать с помощью простой линейки или полосок с числами двигая их относительно друг друга.
7

Описание слайда:

Таблица сложения и вычитания.
Таблица
умножения и деления.
8

Описание слайда:

Табличное деление и умножение
9

Описание слайда:

Совершенствование навыков устных вычислений зависит не только от методики организации урока, но и во многом от того, насколько дети проявляют интерес к предложенным знаниям. Этот интерес можно вызвать и разнообразными учебными пособиями:
На уроках математики, по теме «Сложение однозначных чисел с переходами через десяток», старые счеты превратила в практическое пособие для детей (на толстую проволоку поместила 10 косточек одного цвета и 10 другого. Дети четко видят десяток.
9
+
6
10
+
5
=
15
-1
9+1=10
+5 = 15
10

Описание слайда:

Мы сами составили таблицу таким образом, что включили в неё все случаи, где ответ (сумма) будет двузначным числом. Сделали заготовку для ответов (заготовили место для каждой из двух цифр).

Описание слайда:

После практической деятельности по прибавлению к 9 любого однозначного числа, дети пришли к выводу: «Чтобы к 9 прибавить любое однозначное число достаточно от этого числа отнять 1 и к полученному десятку прибавить остаток».
Важно, что ребенок сам осознал, что в ответе число единиц получается на один меньше того числа, которое прибавляешь. Дети испытывают радость открытия, общения друг с другом, радость взаимопонимания.
Новый прием развивает воображение, логическое мышление, умение рассуждать.
Этот же принцип действует при сложении 8,7,6 с любым однозначным числом.
На этом пособии удобно прийти к выводу о вычитании из любого двузначного числа (меньше 20)- 9,8,7,6.

Описание слайда:
Описание слайда:

3)Дети усматривают связь между произведениями: число десятков от произведения к произведению увеличивается на единицу, в то время как число единиц уменьшается:
10 9 х 4 = 36

Описание слайда:
Описание слайда:
Описание слайда:

Устные приёмы умножения.
Чтобы любое число умножить на 5,достаточно разделить его на 2 и умножить на 10 (т.к. 5-половина 10)
124 х 5 = 124 : 2 х 10 = 620
Чтобы умножить на 50,достаточно число разделить на 2 и умножить на 100 (т.к 50 –половина 100).
36 х 50 = 36 : 2 х 100 = 1800
Чтобы умножить на 25, достаточно число разделить на 4 и умножить на 100 (т.к. 25- четвёртая часть от 100) или наоборот. Если в остатке получится1, то вместо двух нулей поставим 25, если в остатке 2, то – 50,если 3, то – 75.
14 х 25 = 14 : 4 = 3(ост.2), значит 300 + 50 = 350
Чтобы умножить на 125, достаточно число разделить на 8 и умножить на1000(т.к. 125 – восьмая часть от1000)
48 х 125 = 48 : 8 х 1000 = 6000
17

Описание слайда:
Описание слайда:

68 х 99 = 68 х (100 – 1) =68 х 100 – 68 = 6800 – 68 = 6732
47 х 999 = 47 х (1000 – 1) = 47 х 1000 – 47=47000 – 47 = 46953
Но ещё проще ознакомить детей с правилом – « чтобы умножить число на 9 (99, 999) достаточно вычесть из этого числа число его десятков (сотен, тысяч), увеличенное на единицу, и к полученной разности приписать дополнение его цифры единиц до 10 (дополнение до 100 (1000) числа, образованного двумя (тремя) последними цифрами этого числа):
154 х 9 = (154 – 16) х 10 + (10 – 4) = 138 х 10 + 6 = 1380 + 6 = 1386
Умножение на 9, 99, 999

Чтобы умножить число на 9,( 99, 999)достаточно умножить его на 10 (100, 1000) и отнять это же число.
57 х 9 = 57 х 10 – 57 = 570 – 57 = 513

Описание слайда:

Интересно, что 7 х 11 х 13 = 1001 (число Шехерезады)
7 х 143 = 1001
11 х 91 = 1001
77 х 13 = 1001

Описание слайда:
Описание слайда:

Для малых чисел: число справа налево делят по 2 цифры и складывают. Если сумма делится на11, то всё число делится.
528 5 + 28 =33, значит делится.

: на12 числа, которые делятся и на 4, и на 3.
: на14 числа, которые делятся и на 7, и на 2.
: на 15 числа, которые делятся и на 3, и на 5.

Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:

Приём замены множителя разностью

Приём замены множителя произведением:
35 х 6= 35 х ( 2 х 3) = (35 х 2) х 3 = 70 х 3 = 210
125 х 48 = 125 х (8 х 6) = ( 125 х 8) х 6 = 1000 х 6 = 6000
26

Описание слайда:
Описание слайда:
Описание слайда:

3)При увеличении ( уменьшении) уменьшаемого и вычитаемого на несколько единиц разность не изменяется:
231 – 96 = (231 + 4) – (96 +4) = 235 – 100 = 135
3. Умножение.
При увеличении ( уменьшении) одного из множителей на несколько единиц умножаем полученное целое число и прибавленные (отнятые) единицы на другой множитель и из первого произведения вычитаем второе произведение (полученные произведения складываем).
97 х 6 = (100 – 3 ) х 6 = 100 х 6 – 3 х 6 = 600 – 18 = 582
29

Описание слайда:

Некоторые способы вычислений могут показаться сложными, но при правильной организации работы на уроке и внеклассных занятиях учащиеся осваивают их и с удовольствием используют в вычислительной деятельности. Привычка выполнять подобные вычисления устно формирует устойчивый навык, который не раз сыграет добрую службу при изучении более сложного материала.
Вариативность вычислительных навыков учащихся формирует интерес, положительную мотивацию к вычислительной деятельности, даёт возможность знакомить школьников с известными вычислительными секретами, показать практическую значимость математики, тогда перед детьми откроется совсем другая математика – живая, полезная и понятная.
30

Описание слайда:

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Рациональные уравнения (ЕГЭ 2022)

Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.

Ну… Это было сухое математическое определение, и слово-то какое: «рациональные». А по сути, рациональные выражения – это просто целые и дробные выражения без знака корня.

А получается, что под пугающим «рациональным уравнением» скрывается всего лишь уравнение, в котором могут присутствовать сложение, вычитание, умножение, деление и возведение в степень с целым показателем, но НЕ корень из переменной.

Рациональные уравнения — коротко о главном

Определение рационального уравнения:

Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

Алгоритм решения рациональных уравнений:

Система для решения дробно рациональных уравнений:

Что значит решить рациональным способом

Что такое рациональные уравнения?

Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.

А зачем работать больше, если можно работать меньше?

Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).

Целые рациональные уравнения

Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.

Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:

Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.

Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:

Какой наименьший общий знаменатель будет?

Правильно \( \displaystyle 6\)!

Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.

А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:

А теперь делим обе части на \( \displaystyle 13\):

Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).

Дробно-рациональные уравнения

А вот еще одно уравнение \( \displaystyle \frac<5>+\frac<4-6><(x+1)\cdot (x+3)>=3\).

Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.

Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).

Важный момент!

В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).

А это тебе не шутки, переменная в знаменателе!

Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!

Это надеюсь, ты запомнишь, но давай посмотрим что вышло:

Что-то оно огромное получилось, надо все посокращать:

\( \displaystyle 5(x+3)+(4-6)=3\cdot (x+1)\cdot (x+3)\).

Раскроем скобки и приведем подобные члены:

Ну как, это уже попроще выглядит, чем в начале было?

Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)

У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).

Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?

Но ведь это же будет ноль!

На ноль делить нельзя, это все знают, в чем же дело.

Дело в ОДЗ — Области Допустимых Значений!

Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.

Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.

Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:

Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.

Значит, какой ответ будет у решенного уравнения?

В ответ стоит написать только один корень, \( \displaystyle x=0\).

Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.

Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,

ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!

Алгоритм решения рационального уравнения

Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.

Источник

Рациональность – что это такое

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Мы часто говорим, что кто-то поступил рационально, что задача решена рациональным способом и т.д.

Сегодня разберем в деталях, что же обозначает данная характеристика.

Что значит решить рациональным способом

Рационально — это как?

Смысл слова становится понятным сразу, если знать, что оно произошло от латинского «рацио» (ratio), что в переводе обозначает «разум».

Следовательно, рациональный – значит, разумный. Говоря: «Рациональное решение», мы подразумеваем что оно является разумным, оптимальным.

Что значит решить рациональным способом

Ученые-философы трактуют понятие рациональности с точки зрения объективности и субъективности логики и знаний. В этой статье я попробую не влезать в дебри философских умозаключений, а рассказать простыми словами.

Рассмотрим совсем простой пример. Допустим, вам нужно перенести кучу кирпичей из точки А в точку Б. Логично было бы взять по кирпичу в каждую руку и бодрым шагом проделать этот путь столько раз, пока вся куча не будет перенесена.

Логично, но не рационально. А вот взять садовую тачку, сложить туда весь объем стройматериала и за один рейс перевезти кирпичики на новое место – «самое оно».

Таким образом, можно сделать важный вывод: логичное решение не всегда рационально, но рациональное – всегда логично.

Теперь проанализируем применение данной характеристики по отношению к человеческому мышлению.

Рациональное мышление

Рациональное мышление – это умение мыслить, следуя принципам логики, оптимальности и здравомыслия. Присуще многим представителям человечества, при этом не обязательно имеющим склонность и способность к точным наукам.

Как определить, что у человека рациональный склад мышления? Это можно сделать, проанализировав его поведение в обыденной жизни и умение решать поставленные задачи (в том числе – бытовые). Такой индивидуум:

На картинке – схематичное изображение иррационального (слева) и рационального мышления:

Что значит решить рациональным способом

Рационально мыслящий человек все свои действия просчитывает заранее, а затем следует разработанному алгоритму. Иррациональный тип подвержен чрезмерному воздействию эмоций, совершает поступки под воздействием импульса, сиюминутного настроения.

Очевидно, что такая четкая поляризация мышления на рациональное и иррациональное встречается довольно редко. Как правило, мыслительный процесс обычного человека основан на коктейле из логики и эмоций в той или иной пропорции. Чем больше рациональной составляющей, тем более адекватное мышление присуще конкретному индивидууму.

Алгоритм мыслительного процесса, основанного на принципе рационализма:

Что значит решить рациональным способом

Рациональные выводы можно сделать только при полном абстрагировании от эмоций.

Об этом стоит помнить не только при решении математической задачки (хотя там эмоций в принципе нет, кроме «опять не получается!»). Особенно важно подобное абстрагирование при разрешении какой-либо жизненной проблемы. В подобной ситуации откинуть субъективное очень сложно, но без этого верного ответа не найти.

К примеру, вам нужно принять решение о целесообразности смены места работы. Откиньте эмоции, проанализируйте сложившуюся ситуацию. Выпишите на листок в два столбца все «за» и «против», не забудьте про мелочи вроде времени, затрачиваемого на дорогу, и т.д.

По итогу определите, какой столбец получился длиннее. Скорее всего, верный выбор после такого анализа вы сделаете быстро. Вот также и наш мозг использует принцип рационального мышления при решении поставленной задачи: откинув эмоции, детально проанализировав ситуацию.

Кому-то, чтобы мыслить рационально, необходимо прикладывать немалые усилия, а кому-то это дано от природы. Психологи установили, что данное умение можно развить, применяя специальные техники.

Например, используя метод, описанный в предыдущем абзаце: ставите цель, формулируете доводы «за» и «против», выполняете оценку.

Еще несколько методик:

Это не полный перечень практик, помогающих научить мозг мыслить рационально. Найти те, которые более всего подходят для вас, можно в интернете по запросу «психологические практики для развития рационального мышления».

Что значит решить рациональным способом

Пробуйте, и у вас все обязательно получится.

Автор статьи: Елена Копейкина

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

На мой взгляд, рациональность — очень ценное качество, если подходить ко всему рационально, то бишь разумно, успех не заставит себя долго ждать.

То что вы описываете с кирпичами это не рациональность, а эффективность — соотношение результата к потраченным ресурсам. Используйте другие термины в корне отличающиеся — оптимально, разумно, трезво. Их не раскрываете а отождествляете все к одному.

Рациональность — это соотношение самих действий к причинам этого процесса (действия). Поэтому она пластична. Она меняется и зависит от причин процесса

Источник

Рациональные уравнения с примерами решения

Содержание:

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Что значит решить рациональным способом

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Что значит решить рациональным способом

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Что значит решить рациональным способомкогда Что значит решить рациональным способом

Пример №202

Решите уравнение Что значит решить рациональным способом

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Что значит решить рациональным способомгде Что значит решить рациональным способоми Что значит решить рациональным способом— целые рациональные выражения. Имеем:

Что значит решить рациональным способом

Окончательно получим уравнение: Что значит решить рациональным способом

Чтобы дробь Что значит решить рациональным способомравнялась нулю, нужно, чтобы числитель Что значит решить рациональным способомравнялся нулю, а знаменатель Что значит решить рациональным способомне равнялся нулю.

Тогда Что значит решить рациональным способомоткуда Что значит решить рациональным способомПри Что значит решить рациональным способомзнаменатель Что значит решить рациональным способомСледовательно, Что значит решить рациональным способом— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Что значит решить рациональным способом

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Что значит решить рациональным способом

2) приравнять числитель Что значит решить рациональным способом к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Что значит решить рациональным способом равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Что значит решить рациональным способомто Что значит решить рациональным способомгде Что значит решить рациональным способом

Пример №203

Решите уравнение Что значит решить рациональным способом

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Что значит решить рациональным способомИмеем: Что значит решить рациональным способомто есть ОДЗ переменной Что значит решить рациональным способомсодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Что значит решить рациональным способомполучив пропорцию: Что значит решить рациональным способом

По основному свойству пропорции имеем:

Что значит решить рациональным способом

Решим это уравнение:

Что значит решить рациональным способомоткуда Что значит решить рациональным способом

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Что значит решить рациональным способом

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Что значит решить рациональным способом

3) записать целое уравнение Что значит решить рациональным способом и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Что значит решить рациональным способом

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Что значит решить рациональным способом

Областью допустимых значений переменной будут те значения Что значит решить рациональным способомпри которых Что значит решить рациональным способомто есть все значения Что значит решить рациональным способомкроме чисел Что значит решить рациональным способомА простейшим общим знаменателем будет выражение Что значит решить рациональным способом

Умножим обе части уравнения на это выражение:

Что значит решить рациональным способом

Получим: Что значит решить рациональным способома после упрощения: Что значит решить рациональным способомто есть Что значит решить рациональным способомоткуда Что значит решить рациональным способомили Что значит решить рациональным способом

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Что значит решить рациональным способом

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Что значит решить рациональным способом

где Что значит решить рациональным способом— натуральное число, Что значит решить рациональным способом

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Что значит решить рациональным способомкг. Как понимать смысл записи Что значит решить рациональным способом

Рассмотрим степени числа 3 с показателями Что значит решить рациональным способом— это соответственно Что значит решить рациональным способом

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Что значит решить рациональным способом

Число Что значит решить рациональным способомдолжно быть втрое меньше числа Что значит решить рациональным способомравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Что значит решить рациональным способомРавенство Что значит решить рациональным способомсправедливо для любого основания Что значит решить рациональным способомпри условии, что Что значит решить рациональным способом

Нулевая степень отличного от нуля числа а равна единице, то есть Что значит решить рациональным способом при Что значит решить рациональным способом

Вернемся к строке со степенями числа 3, где слева от числа Что значит решить рациональным способомзаписано число Что значит решить рациональным способомЭто число втрое меньше, чем 1, то есть равно Что значит решить рациональным способомСледовательно, Что значит решить рациональным способомРассуждая аналогично получаем: Что значит решить рациональным способоми т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Что значит решить рациональным способом натуральное число, то Что значит решить рациональным способом

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *