Что значит решить квадратное неравенство

Квадратные неравенства (ЕГЭ 2022)

Чтобы разобраться, как решать квадратные неравенства, нам потребуется разобраться, что же такое квадратичная функция.

Зачем вообще нужна квадратичная функция? Какой у нее график? Где он применим?

Замечал, как летит брошенный мяч, по какой траектории движется струя в фонтане? А как думаешь как летит пуля?

По дуге? Самым верным ответом будет «по параболе»!

Парабола и есть график квадратичной функции.

Да стоит только оглядеться, и ты заметишь, что с параболой ты сталкиваешься ежедневно!

Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи.

Итак, давай разбираться.

Квадратные неравенства — коротко о главном

Квадратичная функция–это функция вида: \( \displaystyle f\left( x \right)=a<^<2>>+bx+c=0\), \( \displaystyle a\ne 0\)

График квадратичной функции – парабола. Её ветви направлены вверх, если \( \displaystyle a>0\), и вниз, если \( \displaystyle a Что значит решить квадратное неравенство

Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси \( Ox\).

Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси \( Ox\).

Виды квадратных неравенств

Все квадратные неравенства сводятся к следующим четырём видам:

Алгоритм решения квадратных неравенств:

1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства \( >,\text

2) Найдём корни этого уравнения:

3) Отметим корни на оси \( Ox\) и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)

4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим «\( +\)», а там где ниже – «\( —\)».

5) Выписываем интервал(ы), соответствующий(ие) «\( +\)» или «\( —\)», в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое — не входят.

Квадратичная функция

Итак, давай разбираться.

Квадратичная функция – это функция, которую можно записать вот такой формулой: \( y=a<^<2>>+bx+c\), где \( x\) – независимая переменная, \( a\), \( b\) и \( c\) – некоторые числа, при этом \( a\ne 0\).

К примеру, \( y=2<^<2>>-3x+4\). Чему здесь равны \( a\), \( b\) и \( c\)?

Ну, конечно, \( a=2\), \( b=-3\) и \( c=4\)!

Как уже упоминалось в теме «Квадратные уравнения», графиком такой функции выступает парабола.

В зависимости от значения \( a\) ветви графика направлены вверх или вниз:

Если парабола не пересекает ось Х и ее ветви направлены вверх, функция при всех значениях Х принимает лишь положительные значения.

Если парабола не пересекает ось Х и ее ветви направлены вниз – лишь отрицательные.

В случае, когда у уравнения (\( 1\)) ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси \( Ox\):

Что значит решить квадратное неравенство

Тогда, аналогично предыдущему случаю, при \( a>0\) функция неотрицательна \( \left( f(x) \ge 0 \right)\) при всех \( x\), а при \( a 0\), то всё выражение больше 0, и наоборот.

Ну что, уловил? Тогда давай смотреть примеры!

Источник

Квадратные неравенства.
Метод интервалов

Прежде чем разбираться, как решать квадратное неравенство, давайте рассмотрим, какое неравенство называют квадратным.

Неравенство называют квадратным, если старшая (наибольшая) степень неизвестного « x » равна двум.

Потренируемся определять тип неравенства на примерах.

НеравенствоТип
x − 7 2 + 5x ≥ 0квадратное
2x − 7 > 5линейное
x 2 + x − 12 ≤ 0квадратное

Как решить квадратное неравенство

В предыдущих уроках мы разбирали, как решать линейные неравенства. Но в отличие от линейных неравенств квадратные решаются совсем иным образом.

Для решения квадратного неравенства используется специальный способ, который называется методом интервалов.

Что такое метод интервалов

Методом интервалов называют специальный способ решения квадратных неравенств. Ниже мы объясним, как использовать этот метод и почему он получил такое название.

Чтобы решить квадратное неравенство методом интервалов нужно:

Мы понимаем, что правила, описанные выше, трудно воспринимать только в теории, поэтому сразу рассмотрим пример решения квадратного неравенства по алгоритму выше.

Требуется решить квадратное неравенство.

Переходим к п.2. Необходимо сделать так, чтобы перед « x 2 » стоял положительный коэффициент. В неравенстве « x 2 + x − 12 » при « x 2 » стоит положительный коэффициент « 1 », значит, снова нам ничего делать не требуется.

Согласно п.3 приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение.

x1;2 =

−1 ± √ 1 2 − 4 · 1 · (−12)
2 · 1

x1;2 =

−1 ± √ 1 + 48
2

x1;2 =

−1 ± 7
2

x1 =

−1 − 7
2
x2 =

−1 + 7
2
x1 =

−8
2
x2 =

6
2
x1 = −4x2 = 3

Теперь по п.4 отметим полученные корни на числовой оси в порядке возрастания.

Что значит решить квадратное неравенство

Помните, что, исходя их того, какое перед нами неравенство (строгое или нестрогое) мы отмечаем точки на числовой оси разным образом.

Теперь, как сказано в п.5, нарисуем «арки» над интервалами между отмеченными точками.

Что значит решить квадратное неравенство

Проставим знаки внутри интервалов. Справа налево чередуя, начиная с « + », отметим знаки.

Что значит решить квадратное неравенство

Нам осталось только выполнить пункт 6, то есть выбрать нужные интервалы и записать их в ответ. Вернемся к нашему неравенству.

Что значит решить квадратное неравенство

Запишем полученный ответ квадратного неравенства.

Именно из-за того, что при решении квадратного неравенства мы рассматриваем интервалы между числами, метод интервалов и получил свое название.

После получения ответа имеет смысл сделать его проверку, чтобы убедиться в правильности решения.

Выберем любое число, которое находится в заштрихованной области полученного ответа −4 и подставим его вместо « x » в исходное неравенство. Если мы получим верное неравенство, значит мы нашли ответ квадратного неравенства верно.

Что значит решить квадратное неравенство

Возьмем, например, из интервала число « 0 ». Подставим его в исходное неравенство « x 2 + x − 12 ».

Мы получили верное неравенство при подстановке числа из области решений, значит ответ найден правильно.

Краткая запись решения методом интервалов

Сокращенно запись решения квадратного неравенства методом интервалов будет выглядеть так:

x 2 + x − 12 2 + x − 12 = 0

x1;2 =

−1 ± √ 1 2 − 4 · 1 · (−12)
2 · 1

x1;2 =

−1 ± √ 1 + 48
2
x1 =

−1 − 7
2
x2 =

−1 + 7
2
x1 =

−8
2
x2 =

6
2
x1 = −4x2 = 3

Что значит решить квадратное неравенствоОтвет: −4

Другие примеры решения квадратных неравенств

Рассмотрим решение других примеров квадратных неравенств. Требуется решить квадратное неравенство:

В правой части неравенство уже стоит ноль. При « x 2 » стоит « 2 » ( положительный коэффициент), значит можно сразу переходить к поиску корней.

x1;2 =

−(−1) ± √ (−1 2 ) − 4 · 2 · 0
2 · 2
x1 =

1 + 1
4
x2 =

1 − 1
4
x1 =

2
4
x2 =

0
4
x1 =

1
2
x2 = 0

Что значит решить квадратное неравенствоОтвет: x ≤ 0 ; x ≥

1
2

Рассмотрим пример, где перед « x 2 » в квадратном неравенстве стоит отрицательный коэффициент.

По п.2 общих правил решения методом интервалов нам нужно сделать так, чтобы перед « x 2 » стоял положительный коэффициент. Для этого умножим все неравенство на « −1 ».

Можно переходить к п.4 и п.5. Приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение. Затем расположим полученные корни на числовой оси и проведем между ними «арки».

x1;2 =

−3 ± √ 3 2 − 4 · 1 · (−4)
2 · 1

x1;2 =

−3 ± √ 9 + 16
2
x2 =

−3 − 5
2
x1 =

−3 + 5
2
x2 =

−8
2
x1 =

2
2
x2 = −4x1 = 1

Что значит решить квадратное неравенство0″ />

При определении того какие интервалы нам нужно брать в ответ, исходить нужно из самого последнего изменения неравенства перед нахождением его корней.

В нашем случае самая последняя версия неравенства перед поиском корней уравнения это « x 2 + 3x − 4 ≤ 0 ».

Значит для ответа нужно выбирать интервалы со знаком « − ».

Что значит решить квадратное неравенство0″ /> Ответ: −4 ≤ x ≤ 1

К сожалению, при решении квадратного неравенства не всегда получаются два корня и все идет по общему плану выше. Возможны случаи, когда получается один корень или даже ни одного корня.

Как решить квадратные неравенства в таких случаях, мы разберем в следующем уроке «Квадратные неравенства с одним корнем или без корней».

Источник

Метод интервалов, решение неравенств

Что значит решить квадратное неравенство

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение квадратного неравенства

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

Что значит решить квадратное неравенство

Квадратное неравенство можно решить двумя способами:

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.

Если неравенство со знаком

Плюс или минус: как определить знаки

Можно сделать вывод о знаках по значению старшего коэффициента a:

если a > 0, последовательность знаков: +, −, +,

если a 0, последовательность знаков: +, +,

Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

Неравенство примет вид:

В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

Отобразим эти данные на чертеже:

Что значит решить квадратное неравенство

2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

Что значит решить квадратное неравенство

Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

Источник

Квадратные неравенства, примеры, решения

В данном разделе мы собрали информацию о квадратных неравенствах и основных подходах к их решению. Закрепим материал разбором примеров.

Что представляет собой квадратное неравенство

Давайте посмотрим, как по виду записи различать неравенства различных видов и выделять среди них квадратные.

Приведем пример квадратного неравенства:

Или вот такое неравенство:

Покажем несколько примеров квадратных неравенств:

Способы решения квадратных неравенств

Основным метода три:

Графический метод

Метод интервалов

Решить квадратное неравенство с одной переменной можно методом интервалов. Метод применим для решения любого вида неравенств, не только квадратных. Суть метода в том, чтобы определить знаки промежутков, на которые разбивается ось координат нулями трехчлена a · x 2 + b · x + c при их наличии.

Выделение квадрата двучлена

Неравенства, сводящиеся к квадратным

К квадратным неравенствам с помощью равносильных преобразований можно прийти от неравенств других видов. Сделать это можно разными способами. Например, перестановкой в данном неравенства слагаемых или переносом слагаемых из одной части в другую.

Решение

Для решения задачи используем формулы сокращенного умножения. Для этого соберем все слагаемые в левой части неравенства, раскроем скобки и приведем подобные слагаемые:

Мы получили равносильное квадратное неравенство, которое можно решить графическим способом, определив дискриминант и точки пересечения.

Примером неравенств, которые часто сводятся к квадратным, могут служить иррациональные и логарифмические неравенства. Так, например, неравенство 2 · x 2 + 5 x 2 + 6 · x + 14

Источник

Квадратные неравенства

Чтобы решить квадратные неравенства вспомним, что такое квадратичная функция?
Квадратичная функция – это функция записанная формулой : y=ax 2 +bx+c, где x – независимая переменная, a, b и c – некоторые числа, при этом a≠0.
Графиком квадратичной функции является парабола.

В зависимости от значения a ветви графика направлены вверх или вниз:

Квадратные неравенства имеют вид.

ax 2 +bx+c>0
ax 2 +bx+c 2 +bx+c≥0
ax 2 +bx+c≤0

Чтобы начать решать квадратные неравенства, необходимо знать как решаются квадратные уравнения?
А также для графического метода решения неравенства, необходимо знать алгоритм построения квадратичной функции или параболы?

Как решать квадратные неравенства?

Решение квадратных неравенств рассмотрим на примерах. Для начала разберем случаи, когда у квадратного уравнения дискриминант меньше нуля (нет корней).

Пример:

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, а это значит, что весь график параболы находится выше оси х, потому что а=3>0 (ветви параболы смотрят вверх)

Что значит решить квадратное неравенство

Можно проверить себя взяв любое число с числовой прямой, например число 1. Подставить число 1 вместо переменой х в неравенство 3x 2 +2x+20>0.

Получили верное неравенство 25>0, следовательно так как у нас нет корней уравнения нам подойдут все точки числовой прямой.

Пример:

Рассмотрим этот же пример со знаком неравенства меньше 0

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, значит парабола не пересекает ось x. Весь график параболы находится выше оси х, потому что а=3>0.

А знак уравнения меньше 2 +2x+20 2 +2•1+20 2 +x-2 2 +x-2=0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения меньше 2 +x-2 2 +(-3)-2 2 +(0)-2 2 +(2)-2 2 +x-2>0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения больше >0. Нам в ответ необходимо записать часть параболы, которая находится выше оси x. Визуально графически можно оценить по картинке, нам подходят интервалы (-∞;-2) и (1;+∞).

Что значит решить квадратное неравенствоТакже можно решить методом интервалов. Ось x делится на три участка.

Получили верное неравенство 4>0, следовательно этот интервал (-∞; 2) подходит.

Второй участок (-2; 1). На этом участке можно взять число 0.

Третий участок (1; +∞). На этом участке возьмем число 2.

Получили верное неравенство 4>0, следовательно этот интервал (1; +∞) подходит.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *