Что значит решить квадратное неравенство
Квадратные неравенства (ЕГЭ 2022)
Чтобы разобраться, как решать квадратные неравенства, нам потребуется разобраться, что же такое квадратичная функция.
Зачем вообще нужна квадратичная функция? Какой у нее график? Где он применим?
Замечал, как летит брошенный мяч, по какой траектории движется струя в фонтане? А как думаешь как летит пуля?
По дуге? Самым верным ответом будет «по параболе»!
Парабола и есть график квадратичной функции.
Да стоит только оглядеться, и ты заметишь, что с параболой ты сталкиваешься ежедневно!
Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи.
Итак, давай разбираться.
Квадратные неравенства — коротко о главном
Квадратичная функция–это функция вида: \( \displaystyle f\left( x \right)=a<
^<2>>+bx+c=0\), \( \displaystyle a\ne 0\)
График квадратичной функции – парабола. Её ветви направлены вверх, если \( \displaystyle a>0\), и вниз, если \( \displaystyle a
Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси \( Ox\).
Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси \( Ox\).
Виды квадратных неравенств
Все квадратные неравенства сводятся к следующим четырём видам:
Алгоритм решения квадратных неравенств:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства \( >,\text
2) Найдём корни этого уравнения:
3) Отметим корни на оси \( Ox\) и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим «\( +\)», а там где ниже – «\( —\)».
5) Выписываем интервал(ы), соответствующий(ие) «\( +\)» или «\( —\)», в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое — не входят.
Квадратичная функция
Итак, давай разбираться.
Квадратичная функция – это функция, которую можно записать вот такой формулой: \( y=a<
^<2>>+bx+c\), где \( x\) – независимая переменная, \( a\), \( b\) и \( c\) – некоторые числа, при этом \( a\ne 0\).
К примеру, \( y=2<
Ну, конечно, \( a=2\), \( b=-3\) и \( c=4\)!
Как уже упоминалось в теме «Квадратные уравнения», графиком такой функции выступает парабола.
В зависимости от значения \( a\) ветви графика направлены вверх или вниз:
Если парабола не пересекает ось Х и ее ветви направлены вверх, функция при всех значениях Х принимает лишь положительные значения.
Если парабола не пересекает ось Х и ее ветви направлены вниз – лишь отрицательные.
В случае, когда у уравнения (\( 1\)) ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси \( Ox\):
Тогда, аналогично предыдущему случаю, при \( a>0\) функция неотрицательна \( \left( f(x) \ge 0 \right)\) при всех \( x\), а при \( a 0\), то всё выражение больше 0, и наоборот.
Ну что, уловил? Тогда давай смотреть примеры!
Квадратные неравенства.
Метод интервалов
Прежде чем разбираться, как решать квадратное неравенство, давайте рассмотрим, какое неравенство называют квадратным.
Неравенство называют квадратным, если старшая (наибольшая) степень неизвестного « x » равна двум.
Потренируемся определять тип неравенства на примерах.
Неравенство | Тип |
---|---|
x − 7 2 + 5x ≥ 0 | квадратное |
2x − 7 > 5 | линейное |
x 2 + x − 12 ≤ 0 | квадратное |
Как решить квадратное неравенство
В предыдущих уроках мы разбирали, как решать линейные неравенства. Но в отличие от линейных неравенств квадратные решаются совсем иным образом.
Для решения квадратного неравенства используется специальный способ, который называется методом интервалов.
Что такое метод интервалов
Методом интервалов называют специальный способ решения квадратных неравенств. Ниже мы объясним, как использовать этот метод и почему он получил такое название.
Чтобы решить квадратное неравенство методом интервалов нужно:
Мы понимаем, что правила, описанные выше, трудно воспринимать только в теории, поэтому сразу рассмотрим пример решения квадратного неравенства по алгоритму выше.
Требуется решить квадратное неравенство.
Переходим к п.2. Необходимо сделать так, чтобы перед « x 2 » стоял положительный коэффициент. В неравенстве « x 2 + x − 12 » при « x 2 » стоит положительный коэффициент « 1 », значит, снова нам ничего делать не требуется.
Согласно п.3 приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение.
x1;2 =
−1 ± √ 1 2 − 4 · 1 · (−12) |
2 · 1 |
x1;2 =
−1 ± √ 1 + 48 |
2 |
x1;2 =
−1 ± 7 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = −4 | x2 = 3 |
Теперь по п.4 отметим полученные корни на числовой оси в порядке возрастания.
Помните, что, исходя их того, какое перед нами неравенство (строгое или нестрогое) мы отмечаем точки на числовой оси разным образом.
Теперь, как сказано в п.5, нарисуем «арки» над интервалами между отмеченными точками.
Проставим знаки внутри интервалов. Справа налево чередуя, начиная с « + », отметим знаки.
Нам осталось только выполнить пункт 6, то есть выбрать нужные интервалы и записать их в ответ. Вернемся к нашему неравенству.
Запишем полученный ответ квадратного неравенства.
Именно из-за того, что при решении квадратного неравенства мы рассматриваем интервалы между числами, метод интервалов и получил свое название.
После получения ответа имеет смысл сделать его проверку, чтобы убедиться в правильности решения.
Выберем любое число, которое находится в заштрихованной области полученного ответа −4 и подставим его вместо « x » в исходное неравенство. Если мы получим верное неравенство, значит мы нашли ответ квадратного неравенства верно.
Возьмем, например, из интервала число « 0 ». Подставим его в исходное неравенство « x 2 + x − 12 ».
Мы получили верное неравенство при подстановке числа из области решений, значит ответ найден правильно.
Краткая запись решения методом интервалов
Сокращенно запись решения квадратного неравенства методом интервалов будет выглядеть так:
x 2 + x − 12 2 + x − 12 = 0
x1;2 =
−1 ± √ 1 2 − 4 · 1 · (−12) |
2 · 1 |
x1;2 =
−1 ± √ 1 + 48 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = −4 | x2 = 3 |
Ответ: −4
Другие примеры решения квадратных неравенств
Рассмотрим решение других примеров квадратных неравенств. Требуется решить квадратное неравенство:
В правой части неравенство уже стоит ноль. При « x 2 » стоит « 2 » ( положительный коэффициент), значит можно сразу переходить к поиску корней.
x1;2 =
−(−1) ± √ (−1 2 ) − 4 · 2 · 0 |
2 · 2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 =
| x2 = 0 |
Ответ: x ≤ 0 ; x ≥
1 |
2 |
Рассмотрим пример, где перед « x 2 » в квадратном неравенстве стоит отрицательный коэффициент.
По п.2 общих правил решения методом интервалов нам нужно сделать так, чтобы перед « x 2 » стоял положительный коэффициент. Для этого умножим все неравенство на « −1 ».
Можно переходить к п.4 и п.5. Приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение. Затем расположим полученные корни на числовой оси и проведем между ними «арки».
x1;2 =
−3 ± √ 3 2 − 4 · 1 · (−4) |
2 · 1 |
x1;2 =
−3 ± √ 9 + 16 |
2 |
x2 =
| x1 =
| ||||
x2 =
| x1 =
| ||||
x2 = −4 | x1 = 1 |
0″ />
При определении того какие интервалы нам нужно брать в ответ, исходить нужно из самого последнего изменения неравенства перед нахождением его корней.
В нашем случае самая последняя версия неравенства перед поиском корней уравнения это « x 2 + 3x − 4 ≤ 0 ».
Значит для ответа нужно выбирать интервалы со знаком « − ».
0″ /> Ответ: −4 ≤ x ≤ 1
К сожалению, при решении квадратного неравенства не всегда получаются два корня и все идет по общему плану выше. Возможны случаи, когда получается один корень или даже ни одного корня.
Как решить квадратные неравенства в таких случаях, мы разберем в следующем уроке «Квадратные неравенства с одним корнем или без корней».
Метод интервалов, решение неравенств
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение квадратного неравенства
Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти множество, для которых оно выполняется.
Квадратное неравенство выглядит так:
Квадратное неравенство можно решить двумя способами:
Решение неравенства графическим методом
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.
Как дискриминант влияет на корни уравнения:
Решение неравенства методом интервалов
Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.
Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.
Если неравенство со знаком