Что значит рекурсивный поиск

Как работает рекурсия – объяснение в блок-схемах и видео

Представляю вашему вниманию перевод статьи Beau Carnes How Recursion Works — explained with flowcharts and a video.

Что значит рекурсивный поиск

«Для того чтобы понять рекурсию, надо сначала понять рекурсию»

Рекурсию порой сложно понять, особенно новичкам в программировании. Если говорить просто, то рекурсия – это функция, которая сама вызывает себя. Но давайте попробую объяснить на примере.

Представьте, что вы пытаетесь открыть дверь в спальню, а она закрыта. Ваш трехлетний сынок появляется из-за угла и говорит, что единственный ключ спрятан в коробке. Вы опаздываете на работу и Вам действительно нужно попасть в комнату и взять вашу рубашку.

Вы открываете коробку только чтобы найти… еще больше коробок. Коробки внутри коробок и вы не знаете, в какой из них Ваш ключ. Вам срочно нужна рубашка, так что вам надо придумать хороший алгоритм и найти ключ.

Есть два основных подхода в создании алгоритма для решения данной проблемы: итеративный и рекурсивный. Вот блок-схемы этих подходов:

Что значит рекурсивный поиск

Какой подход для Вас проще?

В первом подходе используется цикл while. Т.е. пока стопка коробок полная, хватай следующую коробку и смотри внутрь нее. Ниже немного псевдокода на Javascript, который отражает то, что происходит (Псевдокод написан как код, но больше похожий на человеческий язык).

В другом подходе используется рекурсия. Помните, рекурсия – это когда функция вызывает саму себя. Вот второй вариант в псевдокоде:

Оба подхода выполняют одно и тоже. Основный смысл в использовании рекурсивного подхода в том, что однажды поняв, вы сможете легко его читать. В действительности нет никакого выигрыша в производительности от использования рекурсии. Порой итеративный подход с циклами будет работать быстрее, но простота рекурсии иногда предпочтительнее.

Поскольку рекурсия используется во многих алгоритмах, очень важно понять как она работает. Если рекурсия до сих пор не кажется Вам простой, не беспокойтесь: Я собираюсь пройтись еще по нескольким примерам.

Граничный и рекурсивный случай

То, что Вам необходимо принять во внимание при написании рекурсивной функции – это бесконечный цикл, т.е. когда функция вызывает саму себя… и никогда не может остановиться.
Допустим, Вы хотите написать функцию подсчета. Вы можете написать ее рекурсивно на Javascript, к примеру:

Что значит рекурсивный поиск

Эта функция будет считать до бесконечности. Так что, если Вы вдруг запустили код с бесконечным циклом, остановите его сочетанием клавиш «Ctrl-C». (Или, работая к примеру в CodePen, это можно сделать, добавив “?turn_off_js=true” в конце URL.)

Рекурсивная функция всегда должна знать, когда ей нужно остановиться. В рекурсивной функции всегда есть два случая: рекурсивный и граничный случаи. Рекурсивный случай – когда функция вызывает саму себя, а граничный – когда функция перестает себя вызывать. Наличие граничного случая и предотвращает зацикливание.

И снова функция подсчета, только уже с граничным случаем:

Что значит рекурсивный поиск

То, что происходит в этой функции может и не быть абсолютно очевидным. Я поясню, что произойдет, когда вы вызовете функцию и передадите в нее цифру 5.

Сначала мы выведем цифру 5, используя команду Console.Log. Т.к. 5 не меньше или равно 1, то мы перейдем в блок else. Здесь мы снова вызовем функцию и передадим в нее цифру 4 (т.к. 5 – 1 = 4).

Мы выведем цифру 4. И снова i не меньше или равно 1, так что мы переходим в блок else и передаем цифру 3. Это продолжается, пока i не станет равным 1. И когда это случится мы выведем в консоль 1 и i станет меньше или равно 1. Наконец мы зайдем в блок с ключевым словом return и выйдем из функции.

Стек вызовов

Рекурсивные функции используют так называемый «Стек вызовов». Когда программа вызывает функцию, функция отправляется на верх стека вызовов. Это похоже на стопку книг, вы добавляете одну вещь за одни раз. Затем, когда вы готовы снять что-то обратно, вы всегда снимаете верхний элемент.

Я продемонстрирую Вам стек вызовов в действии, используя функцию подсчета факториала. Factorial(5) пишется как 5! и рассчитывается как 5! = 5*4*3*2*1. Вот рекурсивная функция для подсчета факториала числа:

Теперь, давайте посмотрим что же происходит, когда вы вызываете fact(3). Ниже приведена иллюстрация в которой шаг за шагом показано, что происходит в стеке. Самая верхняя коробка в стеке говорит Вам, что вызывать функции fact, на которой вы остановились в данный момент:

Что значит рекурсивный поиск

Заметили, как каждое обращение к функции fact содержит свою собственную копию x. Это очень важное условие для работы рекурсии. Вы не можете получить доступ к другой копии функции от x.

Нашли уже ключ?

Давайте кратенько вернемся к первоначальному примеру поиска ключа в коробках. Помните, что первым был итеративный подход с использованием циклов? Согласно этому подходу Вы создаете стопку коробок для поиска, поэтому всегда знаете в каких коробках вы еще не искали.

Что значит рекурсивный поиск

Но в рекурсивном подходе нет стопки. Так как тогда алгоритм понимает в какой коробке следует искать? Ответ: «Стопка коробок» сохраняется в стеке. Формируется стек из наполовину выполненных обращений к функции, каждое из которых содержит свой наполовину выполненный список из коробок для просмотра. Стек следит за стопкой коробок для Вас!

И так, спасибо рекурсии, Вы наконец смогли найти свой ключ и взять рубашку!

Что значит рекурсивный поиск

Вы также можете посмотреть мое пятиминутное видео про рекурсию. Оно должно усилить понимание, приведенных здесь концепций.

Заключение от автора

Надеюсь, что статья внесла немного больше ясности в Ваше понимание рекурсии в программировании. Основой для статьи послужил урок в моем новом видео курсе от Manning Publications под названием «Algorithms in Motion». И курс и статься написаны по замечательной книге «Grokking Algorithms», автором которой является Adit Bhargava, кем и были нарисованы все эти замечательные иллюстрации.

И наконец, чтобы действительно закрепить свои знания о рекурсии, Вы должны прочитать эту статью, как минимум, еще раз.

От себя хочу добавить, что с интересом наблюдаю за статьями и видеоуроками Beau Carnes, и надеюсь что Вам тоже понравилась статья и в особенности эти действительно замечательные иллюстрации из книги A. Bhargav «Grokking Algorithms».

Источник

Рекурсия вокруг нас: люди, соборы и капуста романеско

Спойлер: рекурсия есть не только в цифровом мире. Встречается она и в реальном. И намного чаще, чем вы думаете, — разная и интересная.

Что значит рекурсивный поиск

Что значит рекурсивный поиск

Валентина Палатурян для Skillbox

Про рекурсивные функции я узнала на уроках информатики. Потом долго считала рекурсию всего лишь отвлечённым понятием из программирования, далёким от реальной жизни. Почему-то в школе нам не рассказывают, что на самом деле явление это встречается в природе, науке, искусстве, а рекурсивные алгоритмы применимы даже для решения бытовых задач.

Что такое рекурсия

В программировании рекурсивная функция — это такая функция, которая вызывает себя из себя же самой, но с другими значениями параметров.

Примечание. Функция может вызывать себя и через промежуточные функции. Например, функция А запускает функцию Б, а та снова вызывает А.

Цепочка вызовов не может быть бесконечной, она должна прерваться и выдать ответ. Поэтому должен возникать крайний случай (или несколько), когда функции уже не нужно вызывать себя с другими параметрами (то есть погружаться ещё глубже), а можно сразу вернуть результат.

Звучит и правда сложно, но не пугайтесь — с примером станет понятнее.

Классический пример рекурсивной функции — вычисление факториала, то есть произведения натуральных чисел от 1 до N.

Здесь N=0 — это крайний случай: функция ничего не вызывает и сразу возвращает единицу (по определению, факториал нуля равен единице).

В более широком смысле рекурсией называют описание или изображение предмета, объекта, явления внутри самого себя. Рекурсивный принцип — это принцип самовоспроизведения и одновременно усложнения системы по одному и тому же алгоритму.

Тут-то и выясняется, что и нас, людей, тоже можно считать рекурсивными: ведь в клетке заложена информация обо всём организме, в ДНК записана информация о том, как синтезировать ДНК.

Что значит рекурсивный поиск

Фулстек-разработчик. Любимый стек: Java + Angular, но в хорошей компании готова писать хоть на языке Ада.

Рекурсия — не то же самое, что бесконечный цикл

Хотя её часто с ним путают. Понять разницу проще всего на примере. Предположим, ваш начальник издал приказ:

Что значит рекурсивный поиск

Это не рекурсия. Просто в ситуации, когда начальник не прав, мы попадём в бесконечный цикл вызовов.

Но можно внести небольшое изменение и получить рекурсию:

Что значит рекурсивный поиск

Приказ стал рекурсивным, потому что в одной из веток вызывает сам себя.

На обед у нас салат «Рекурсивный»: помидоры, огурцы, салат.

Рекурсию можно увидеть

И это очень красиво. Рекурсивные изображения, они же фрактальные паттерны или просто фракталы, — это рисунки или предметы, которые подобны сами себе: состоят из уменьшенных копий себя.

Подобным же образом выстроены кровеносные сосуды и нервы в организме животных. Свойствами фракталов обладают снежинки, а ещё — удивительная капуста романеско. Вот она на картинке ниже — ну разве не красавица? 😀

Что значит рекурсивный поиск

В архитектуре рекурсия встречается в облике готических соборов.

Что значит рекурсивный поиск

В этом соборе XIII века задействован один из характерных для готики приёмов: его окна украшены тонкими ажурными перегородками. Их основной узор — стрельчатая арка с кругом внутри, круг поддерживается двумя арками меньшего размера.

А вот рекурсивная версия того же узора — Собор Линкольна.

Что значит рекурсивный поиск

Здесь окно тоже выполнено в форме остроконечной арки с вписанным в неё кругом, а круг лежит на двух других арках. Вот только внутри каждой из этих арок — снова круг и две ещё меньших арки, а внутри них — ещё по одному кругу на двух меньших арках.

Другой пример архитектурной рекурсии — собор Святого Петра в Ватикане.

Что значит рекурсивный поиск

Джордж Херси, американский писатель и журналист, сравнивал его с китайскими шкатулками с секретом. По его словам, архитектурный комплекс состоит из одной макроцеркви, четырёх наборов того, что журналист назвал макси-церквями, 16 мини-церквей и 32 микроцерквей. А мог бы просто сказать, что собор рекурсивный.

В изобразительном искусстве рекурсия тоже отметилась — взять хотя бы «Триптих Стефанески» Джотто. На его центральной панели изображён кардинал Стефанески, которой держит в руках этот же триптих (на котором тоже изображён триптих и так далее).

Что значит рекурсивный поиск

А вот пример посвежее — литография «Рисующие руки» нидерландского художника XX века Маурица Эшера:

Что значит рекурсивный поиск

Чтобы увидеть рекурсию, необязательно идти в картинную галерею — просто посмотрите на герб России. Двуглавый орёл держит в правой лапе скипетр, который увенчан двуглавым орлом, а тот тоже держит скипетр, который… 🙂 В общем — вот:

Что значит рекурсивный поиск

Рекурсию можно услышать

В музыке есть композиции, которые тоже можно назвать рекурсивными. Американский физик и писатель Дуглас Хофштадтер в своей книге «Гёдель, Эшер, Бах: эта бесконечная гирлянда» рассказывает о рекурсии, приводя в пример джигу из «Французской сюиты №5» Баха.

В первой её части трижды повторяется мелодический переход из тональности соль мажор в ре минор: мелодия как бы вызывает сама себя, погружаясь всё глубже. А во второй части, наоборот, трижды поднимается от ре к соль.

Программисту это может напомнить вычисление факториала числа 3: функция трижды вызывает саму себя, затем трижды возвращается с промежуточными результатами вычислений, а затем — с итоговым.

Что значит рекурсивный поиск

В лингвистике рекурсией называют способность языка порождать вложенные предложения и конструкции. Например, предложение «Саша читает статью про рекурсию» можно достроить до «Лена смотрит, как Саша читает статью про рекурсию». А его, в свою очередь, превратить в «Ленин друг Петя не одобряет, что Лена смотрит, как Саша читает статью про рекурсию».

Принято считать, что рекурсия свойственна любому человеческому языку (сомнения пока есть только насчёт языка пираха, на котором разговаривают в бразильской части бассейна Амазонки), а распознавать и понимать её — едва ли не врождённая способность людей.

Чтобы доказать это, немецкие учёные даже ставили эксперименты на пятимесячных младенцах. Они измеряли активность головного мозга с помощью ЭЭГ — и сравнивали реакцию малышей на вложенные языковые конструкции, правильные и неправильные. Так как дети были настолько малы, что речь ещё не понимали, вместо слов им проигрывали последовательности звуков разной частоты. Причём частоты звука для связанных слов во вложенных конструкциях совпадали.

Что значит рекурсивный поиск

В предложении «Мальчик, за которым гналась девочка, пнул мяч» две связанные конструкции: 1) «мальчик пнул» и 2) «девочка гналась». Их обозначили звуками частотой 1900 и 1200 Герц и разделили коротким звуком в 1500 Герц. Слева — корректные, а справа — некорректные языковые паттерны. Кроме пятитоновых, проигрывались и семитоновые вложенные последовательности.

Научные подробности ищите в оригинальной публикации. Нам важнее выводы: эксперименты показали, что даже мозгу младенцев неправильные конструкции определённо не понравились.

Конечно, выборка (38 участников) слишком мала, чтобы распространять результаты на всё человечество, но теория интересная.

Рекурсивные алгоритмы легко смоделировать с помощью подручных средств

Возьмите, например, матрёшку. Все вложенные в неё куклы подобны кукле-шкатулке, кроме наименьшей, которая представляет собой базовый случай. То есть матрёшка — твёрдое воплощение рекурсии.

Что значит рекурсивный поиск

А если задаться целью поставить синюю точку на самой маленькой кукле, то можно буквально на пальцах реализовать рекурсивный алгоритм:

А вот алгоритм, для исполнения которого не нужны дополнительные предметы. Представьте, что вы сидите в последнем ряду длинного зала и хотите узнать, сколько всего в нём рядов. Конечно, можно встать и пересчитать их, но вам лень, а ещё вы уже знаете про рекурсию.

Так что вы спрашиваете соседа спереди, сколько перед ним рядов. Если он называет какое-то число, вы прибавляете к нему ещё два (один ряд — для соседа и один — тот, в котором сами сидите) и получаете ответ, а иначе — предлагаете этому самому соседу применить ваш гениальный алгоритм уже к его соседу спереди.

Если все участники процесса будут настроены доброжелательно, то в итоге очередь отвечать дойдёт до первого ряда и вам обратно по цепочке вернут результат — полученный с помощью рекурсивного алгоритма, между прочим. То есть:

И минутка предметного юмора

— Помнишь, Антоха желание проиграл? Так вот, я ему загадал, чтобы он два дня на все предметы, с которыми что-то сделал, клеил стикер с названием этого действия.

— И что, он на каждый новый стикер клеил другой с надписью «наклеил»?

Подытожим

Рекурсивные предметы и явления окружают нас повсюду. Рекурсию можно увидеть, услышать, потрогать руками. Рекурсия — это просто. Чтобы понять её, не обязательно разбираться с фракталами или фугами Баха. Объяснить рекурсию можно даже пятилетнему ребёнку. Просто прочтите ему стишок Андрея Усачёва:

Шёл по улице жучок

На груди блестел значок,

Нарисован был жучок,

И на нём висел значок,

Был ещё один жучок…

Что глядел я целый час

Был ли у жучка значок?

Был ли на значке жучок?

Тональность — музыкальный термин. Определяется тоникой (опорная, главная нота музыкального произведения) и типом лада (мажор или минор).

ЭЭГ — электроэнцефалограмма, регистрирует электрические сигналы клеток головного мозга.

Источник

Рекурсия

Рекурсия — это жемчужина теории алгоритмов, и это первое, с чем знакомят школьников (сразу после процедур ввода и вывода данных, элементарных арифметических операций, оператора цикла и условного оператора).

Простота рекурсии обманчива. Метод рекурсии таит в себе много опасностей и сложностей, и в то же время готовит много приятных сюрпризов.

Давно известен такой математический приём, как разбиение задачи на простые шаги, каждый из которых тоже можно разложить на более мелкие шаги и так далее, пока не доберёмся до самых элементарных «шажочков».

Представим, что нужно пройти 1000 шагов. Для решения делаем один шаг, остаётся 999: задача упростилась. Сделав такое упрощение 999 раз, дойдём до самой элементарной задачи — шагнуть один раз. Конечно, этот пример слишком прост. Далее мы рассмотрим более сложные примеры, освещающие явление рекурсии как с хорошей так, и с плохой стороны.

Вы, наверное, уже заметили сходство понятий рекурсии и математической индукции. У рекурсии, как и у математической индукции, есть база — аргументы, для которых значения функции определены (элементарные задачи), и шаг рекурсии — способ сведения задачи к более простым.

Содержание

Числа Фибоначчи [ править ]

Современные языки программирования дают возможность программировать рекурсивные определения без особых усилий, но в таких определениях таятся опасности.

Проблемы рекурсии и как их решать [ править ]

Что значит рекурсивный поиск

Есть способ решить проблему повторных вычислений. Он очевиден — нужно запоминать найденные значения, чтобы не вычислять их каждый раз заново. Конечно, для этого придётся активно использовать память.

Что значит рекурсивный поиск

Например, рекурсивный алгоритм вычисления чисел Фибоначчи легко дополнить тремя «строчками»:

Такая рекурсия с запоминанием называется динамическим программированием сверху.

Рекурсию с запоминанием для вычисления чисел Фибоначчи мы привели просто для демонстрации идеи. Для чисел Фибоначчи есть простой «человеческий алгоритм», не использующий рекурсивные вызовы и запоминание всех вычисленных значений. Достаточно помнить два последних числа Фибоначчи, чтобы вычислить следующее. Затем предпредыдущее можно «забыть» и перейти к вычислению следующего:

F ( n ) = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) <\displaystyle F(n)=<\frac <1><\sqrt <5>>>\left(\left(<\frac <1+<\sqrt <5>>><2>>\right)^-\left(<\frac <1-<\sqrt <5>>><2>>\right)^\right)> Что значит рекурсивный поиск.

Особенно просто и наглядно функцию вычисления чисел Фибоначчи можно задать на языке Mathematica (см. http://www.wolfram.com):

Простое рекурсивное определение: F(n_) := F(n-1) + F(n-2); F(1) = F(2) = 1;

Рекурсивное определение с запоминанием: F[n_] := (F[n] = F[n-1] + F[n-2]); F[1] = F[2] = 1;

Задача 1 [ править ]

Задача 2 [ править ]

Задача 3 [ править ]

Задача 4 [ править ]

Задача о золотой горе [ править ]

На международной олимпиаде по информатике в 1994 году в первый день среди прочих задач была дана следующая задача.

Что значит рекурсивный поиск

Формулировка задачи: На рисунке показан пример треугольника из чисел. Написать программу, вычисляющую наибольшую сумму чисел, через которые проходит путь, начинающийся на вершине и заканчивающийся где-то на основании.

В примере, описанном выше, это путь 7, 3, 8, 7, 5, дающий максимальную сумму 30.

В примере, описанном выше, это путь 7, 3, 8, 7, 5, дающий максимальную сумму 30.

Пример входных данных:

Эту задачу можно встретить и под названием «Золотая гора» — нужно спуститься с горы и собрать как можно больше золота.

Что значит рекурсивный поиск

На рисунке обозначены две горки (треугольники): одна с вершиной в числе 3, другая с вершиной в числе 8. Эти горки пересекаются, и их пересечение тоже горка с вершиной в числе 1. Можно заметить, что при вычислении самого лучшего пути по рекурсивному алгоритму горка с вершиной в числе 1 будет использоваться дважды. Для горок с вершинами в нижних строчках повторных вызовов будет ещё больше. Это и есть причина медленности работы алгоритма.

Задача 5 [ править ]

Эта задача показывает, что придумать рекурсивный алгоритм часто намного проще, чем не рекурсивный. Также несложно добавить к рекурсии запоминание вычисленных значений. Но нередко существует более быстрый алгоритм, основанный на динамическом программировании, который использует меньше памяти, нежели рекурсия с запоминанием, и делает в два раза меньше операций обращения к памяти.

Задача «Сделай палиндром» [ править ]

Палиндром — это последовательность символов, которая слева-направо и справа-налево пишется одинаково. Например «АБА» или «АББ ББА». Дана последовательность символов. Какое минимальное количество символов нужно удалить из неё, чтобы получить палиндром?

Длина последовательности не больше 20 символов. Ограничение на время работы программы: 5 секунд.

Эта задача давалась на районной олимпиаде школьников Удмуртской республики в 1998 году. Рассмотрим её решение, основанное на рекурсии.

Алгоритм Евклида [ править ]

Даны два натуральных числа. Найти самое большое натуральное число, которое делит оба без остатка. Такое число называется наибольший общий делитель (НОД) (GCD — Greatest Common Divisor).

Пример: Вход: 18, 600 Выход: 6

Рассмотрим второе свойство. При замене одного из чисел на его разность с первым, наибольший общий делитель остаётся прежним.

3 5 = 1 1 + 1 1 + 1 2 <\displaystyle <\frac <3><5>>=<\frac <1><\displaystyle 1+<\frac <1><\displaystyle 1+<\frac <1><2>>>>>>> Что значит рекурсивный поиск, 5 8 = 1 1 + 1 1 + 1 1 + 1 2 <\displaystyle <\frac <5><8>>=<\frac <1><\displaystyle 1+<\displaystyle <\frac <1><\displaystyle 1+<\frac <1><\displaystyle 1+<\frac <1><2>>>>>>>>>> Что значит рекурсивный поиск, 8 13 = 1 1 + 1 1 + 1 1 + 1 1 + 1 2 <\displaystyle <\frac <8><13>>=<\frac <1><\displaystyle 1+<\displaystyle <\frac <1><\displaystyle 1+<\frac <1><\displaystyle 1+<\frac <1><\displaystyle 1+<\frac <1><2>>>>>>>>>>>> Что значит рекурсивный поиск.

Задача 6 [ править ]

Задача 7 [ править ]

При построении рекурсивной функции важно ответить на следующие вопросы:

Одно из важных достоинств рекурсивных алгоритмов заключается в том, что они просты и наглядны. Но рекурсия не всегда является эффективным (самым быстрым) решением. Рекурсия использует мало памяти, но работать может довольно долго, как в примере с числами Фибоначчи.

Задача 8 [ править ]

Есть несколько алгоритмов Евклида, основанных на различных рекуррентных соотношениях для НОД:

Задачи для самостоятельного решения [ править ]

Существуют и другие задачи, решаемые рекурсией и динамическим программированием. Вот самые известные: обход конём шахматной доски, задача о восьми ферзях, триангуляция, поиск пути в лабиринте, вычисление арифметического выражения и многое другое.

Ниже предлагается несколько простых задач, для знакомства с идеей рекурсии.

Задача 9 [ править ]

Задача 10 [ править ]

Что значит рекурсивный поиск

Задача 11 [ править ]

Эта строчка содержит рекурсивное определение объекта s : «объект типа s может быть получен из объекта типа s с помощью окружения его открывающейся и закрывающейся круглой скобки, или с помощью приписывания двух объектов типа s друг к другу, либо это просто пустое слово». Вертикальная черта в нотации EBNF означает союз «или». С помощью одинарных кавычек выделяют символы или строки символов, пробелы играют роль разделителей.

Задача 12 [ править ]

Задача 13 [ править ]

Задача коммивояжёра [ править ]

Рекурсия с запоминанием работает не всегда. Рассмотрим пример задачи, для которой есть долго работающий рекурсивный алгоритм, который нельзя существенно ускорить с помощью запоминания вычисленных значений.

Коммивояжёр (франц. commis voyageur), разъездной представитель торговой фирмы, предлагающий покупателям товары по имеющимся у него образцам, каталогам и тому подобное.

Наш коммивояжёр ездит по городам с целью сбыта товаров разного рода. Он всегда начинает и заканчивает свой путь в одном и том же городе. На проживание во всех городах коммерсант тратит одинаковую сумму денег. Поэтому существенна только сумма на проезд из города в город. Есть список городов и стоимость проезда между некоторыми парами городов.

Задача коммивояжёра — побывать во всех городах (не менее одного раза) и при этом потратить как можно меньше денег на проезд и вернуться обратно.

Стоимости проезда между парами городов записаны в следующем формате:

Результат записывается в следующем формате:

Город задаётся названием без пробела. Длина названия города не более 30 символов. Программа должна реагировать на клавишу ESC. Если ESC была нажата, то в течении 10 секунд программа должна записать результат и закончить работу.

Снежинка Коха [ править ]

Снежинка Коха — это фрактальное множество точек на плоскости, которое похоже на снежинку.

Что значит рекурсивный поиск

Здесь приведена программа на языке PostScript. Этот код интерпрерируется программой GSView, которую можно взять на сайте http://www.ghostscript.com.

Снежинка рисуется рекурсивным образом. Сначала она выглядит как треугольник. Затем на сторонах этого треугольника рисуются треугольные выступы. Получается шеcтиконечная звезда. На сторонах этой звезды снова рисуются треугольные выступы (см. синюю фигуру). Процесс наращивания треугольных выступов можно продолжить до бесконечности и получить в пределе вполне корректно определённое множество точек на плоскости.

Программа «Снежинка Коха»

Заключение [ править ]

Рекурсивный метод решения задач является чуть ли не базовым методом решения алгоритмических задач. Рекурсия, дополненная идеями динамического программирования, жадными алгоритмами и идеей отсечения, превращается в тяжёлую артиллерию программистов. Но не следует забывать, что краткость записи рекурсивных функций не всегда означает высокую скорость их вычисления. И есть ряд задач, в которых рекурсия просто вредна (такова, например, задача вычисления кратчайшего пути в графе).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *