Что значит рекуррентная формула

Рекуррентная формула

При суммировании ряда необходимо решить следующие задачи:

a) свести вычисления к простейшим арифметическим операциям;

b) уменьшить число этих операций и время расчета;

c) уменьшить погрешность округления.

Рассмотрим вычисление функции sin x. Разложение этой функции в ряд Тейлора имеет следующий вид

Что значит рекуррентная формула.

Область сходимости ряда определяется неравенством Что значит рекуррентная формула, то есть ряд сходится при любом значении x.

Величина n! называется “nфакториал” и вычисляется по формуле:

n! = 1 × 2 × 3 × … × (n – 1) × n = (n – 1)! × n или Что значит рекуррентная формула

Принято считать, что 0! = 1.

Суммирование ряда последовательным вычислением слагаемых и добавлением их к сумме, как на приведенной выше блок-схеме, сводит вычисления к простейшим арифметическим операциям, то есть первая задача при этом решается. Что касается второй задачи – уменьшения количества этих операций, – то многократное перемножение чисел в числителе (степени x) и в знаменателе (n!) вряд ли можно считать рациональным. При этом (третья задача) погрешность вычислений возрастает с увеличением номера члена ряда – слишком велики становятся и числитель, и знаменатель.

Задачи сокращения количества операций и уменьшения погрешности вычислений решает рекуррентная формула, позволяющая вычислить значение очередного члена ряда, используя уже найденное значение предыдущего. Рекуррентная формула имеет вид:

В нашем примере произвольный член ряда определяется формулой:

Номер начального члена ряда n = 0, его значение a0 = x.

Для расчета коэффициента рекурсии

Что значит рекуррентная формула

определим значение следующего (n+1)-го члена ряда.

В формулу общего члена ряда Что значит рекуррентная формула

вместо n подставим (n+1), получим Что значит рекуррентная формула

Вычисляя коэффициент рекурсии, сокращаем дробь:

Что значит рекуррентная формула

Чтобы сократить факториалы, рассмотрим числитель и знаменатель отдельно:

(2n + 1)! = 1 × 2 × 3 × … × (2n + 1)

(2n + 3)! = 1 × 2 × 3 × … × (2n + 1) × (2n + 2) × (2n + 3)

Окончательная формула коэффициента рекурсии

Что значит рекуррентная формула

Отсюда получаем рекуррентную формулу для вычисления членов ряда

Что значит рекуррентная формула

Проверка полученной формулы убережет Вас от ошибок в алгоритме и, возможно, сэкономит усилия при отладке программы.

Подставив n = 0 в формулу общего члена ряда Что значит рекуррентная формула, получаем a0 = x.

Далее определим по рекуррентной формуле a1 и a2, сверяя результаты с соответствующими членами ряда:

при n = 0 Что значит рекуррентная формула

при n = 1 Что значит рекуррентная формула

Совпадение полученных значений с членами ряда показывает, что коэффициент рекурсии рассчитан правильно.

Дата добавления: 2017-09-19 ; просмотров: 1223 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Рекуррентная формула

Рекуррентная формула — формула вида Что значит рекуррентная формула, выражающая каждый член последовательности Что значит рекуррентная формулачерез p предыдущих членов.

Общая проблематика вычислений с использованием рекуррентных формул является предметом теории рекурсивных функций.

Содержание

Примеры

Приложения

Рекуррентные формулы используются для описания времени работы алгоритма, рекурсивно обращающегося к самому себе. В такой формуле время, требуемое для решения задачи объемом ввода n, выражается через время решения вспомогательных подзадач. [1]

См. также

Примечания

Полезное

Смотреть что такое «Рекуррентная формула» в других словарях:

рекуррентная формула — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN recurrence formularecursion formula … Справочник технического переводчика

рекуррентная формула — rekurentinė formulė statusas T sritis fizika atitikmenys: angl. recurrence formula vok. Rekursionsformel, f rus. рекуррентная формула, f pranc. formule de récurrence, f … Fizikos terminų žodynas

Рекуррентная формула — (от лат. recurrens, родительный падеж recurrentis возвращающийся) формула приведения, формула, сводящая вычисление n го члена какой либо последовательности (чаще всего числовой) к вычислению нескольких предыдущих её членов. Обычно эти… … Большая советская энциклопедия

РЕКУРРЕНТНАЯ ТОЧКА — д и н а м и ч е с к о й с и с т е м ы точка хдинамич. системы ft (или, в иных обозначениях, f(t,.), см. [2]), заданной на метрич. пространстве S, удовлетворяющая условию: для всякого e>0 найдется T>0 такое, что все точки траектории ftx… … Математическая энциклопедия

Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula уменьшительное от forma образ, вид) принятая в математике (а также… … Википедия

Источник

Решение рекуррентных соотношений

Содержание

Определения [ править ]

[math] F_0 = 0,\qquad F_1 = 1,\qquad F_ = F_ + F_, \quad n\geqslant 2, \quad n\in Z[/math]

Для этого можно использовать метод производящих функций (англ. generating function method).

Метод производящих функций [ править ]

Примеры [ править ]

[math]1[/math] пример [ править ]

Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.

Задано линейное однородное рекуррентное соотношение порядка [math]2[/math] с постоянными коэффициентами:
[math]\begin a_0&<>=<>&0,\\ a_1&<>=<>&1,\\ a_n&<>=<>&5a_-6a_, \quad n\geqslant2.\\ \end [/math]

Будем искать производящую функцию последовательности в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n = a_0+a_1z+a_2z^2+\cdots, [/math]

Теперь сложим все уравнения для всех значений [math]n[/math] :
[math] \underbrace^<\infty>a_nz^n>_ <=>z+5\displaystyle\sum_^<\infty>a_z^n-6\displaystyle\sum_^<\infty>a_z^n. [/math]

Аналогичные манипуляции со второй суммой дают нам выражение
[math] \displaystyle\sum_^<\infty>a_z^n = z^2\displaystyle\sum_^<\infty>a_z^ = z^2\displaystyle\sum_^<\infty>a_z^=z^2G(z). [/math]

откуда получаем производящую функцию последовательности в замкнутом виде:
[math] G(z) = \dfrac<1-5z+6z^2>. [/math]

Теперь разобьём дробь на сумму простых дробей:
[math] \dfrac <(1-3z)(1-2z)>= \dfrac<1> <1-3z>— \dfrac<1><1-2z>. [/math]

Из этого разложения следует, что
[math] \dfrac<1><1-3z>= \displaystyle\sum_^<\infty>(3z)^n \quad\mbox< и >\quad \dfrac<1><1-2z>= \displaystyle\sum_^<\infty>(2z)^n. [/math]

С другой стороны, мы искали [math]G(z)[/math] в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n, [/math]
поэтому, в силу равенства рядов, [math]a_n=3^n-2^n[/math] (для [math]n\geqslant 0[/math] ).

[math]2[/math] пример: числа Фибоначчи [ править ]

Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
[math]\begin f_0&<>=<>&0,\\ f_1&<>=<>&1,\\ f_n&<>=<>&f_+f_, \quad n\geqslant2.\\ \end [/math]

Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
[math]\begin 1\cdot f_0&<>=<>&0\cdot 1,\\ z\cdot f_1&<>=<>&1\cdot z,\\ z^n\cdot f_n&<>=<>&(f_+f_)\cdot z^n, \quad n\geqslant2.\\ \end [/math]

Складываем все строчки:
[math] f_0 + f_1 z + \displaystyle\sum_^<\infty>f_nz^n = z + \displaystyle\sum_^<\infty>f_z^n+\displaystyle\sum_^<\infty>f_z^n. [/math]

Третий шаг алгоритма требует привести все суммы к замкнутому виду:
[math]\begin G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^+z^2\displaystyle\sum_^<\infty>f_z^, \\ G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^n+z^2\displaystyle\sum_^<\infty>f_z^n, \\ G(z)&<>=<>& \displaystyle z + z(G(z)-f_0)+z^2G(z),\\ G(z)&<>=<>& \displaystyle z + zG(z)+z^2G(z),\\ \end [/math]

откуда получаем замкнутое выражение для производящей функции:
[math] G(z) = \dfrac<1-z-z^2>. [/math]

Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
[math]\displaylines< 1-z-z^2 = 0 \cr z_1=-\dfrac<1-\sqrt<5>><2>, z_2=-\dfrac<1+\sqrt<5>><2>. > [/math]

Нам известно разложение следующей рациональной функции:
[math] \dfrac<1> <1-z>= \displaystyle\sum_^<\infty>z^n = 1 + z + z^2 + z^3 + \cdots. [/math]

Рассмотрим первую дробь и поделим в ней числитель и знаменатель на [math]z_1[/math] :
[math] \dfrac = \dfrac1\dfrac<1><1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

Аналогично (но с делением на [math]z_2[/math] ) поступим со второй дробью:
[math] \dfrac = \dfrac1\dfrac1<1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

[math]3[/math] пример [ править ]

Рекуррентное соотношение:
[math] \begin a_0 = f_0^2 = 1 \\ a_1 = f_1^2 = 1 \\ a_2 = f_2^2 = 4 \\ a_n = 2a_ + 2a_ — a_, \quad n\geqslant3.\\ \end [/math]

[math]4[/math] пример [ править ]

Рассмотрим следующее рекуррентное соотношение:
[math]\begin a_0&<>=<>&1,\\ a_1&<>=<>&2,\\ a_n&<>=<>&6a_-8a_+n, \quad n\geqslant2.\\ \end [/math]

Вспомним, что
[math] (z^n)’ = nz^, [/math]

поэтому
[math] \displaystyle\sum_^<\infty>nz^n=z\displaystyle\sum_^<\infty>nz^=z\displaystyle\sum_^<\infty>(z^n)’=z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’. [/math]

Последняя сумма может быть свёрнута:
[math] \displaystyle\sum_^<\infty>z^n=\displaystyle\sum_^<\infty>z^n-1-z=\dfrac<1><1-z>-1-z=\dfrac<1-z>. [/math]

Подставив свёрнутое выражение обратно, имеем,
[math] z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’ = z \biggl(\dfrac<1-z>\biggr)’=\dfrac<(1-z)^2>. [/math]

Это уравнение для производящей функции. Из него выражаем [math]G(z)[/math] :
[math] G(z) = \dfrac<1-6z+11z^2-5z^3><(1-6z+8z^2)(1-z)^2>. [/math]

Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
[math] \dfrac<1> <(1-z)^2>=(1-z)^ <-2>=\displaystyle\sum_^<\infty>\binom<-2>(-z)^n=\displaystyle\sum_^<\infty>(-1)^n\binom<1>(-z)^n =\displaystyle\sum_^<\infty>(n+1)z^n. [/math]

Источник

Рекуррентные соотношения и уравнения

В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.

Как решать рекуррентные соотношения?

Для решения рекуррентных соотношений применяют один из двух основных способов:

В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.

Метод производящих функций

Метод характеристических функций

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

Решение для последовательности чисел Фибоначчи

Общая формула данной рекуррентной последовательности имеет вид6

Способ 1. Производящяя функция

$$\begin 1\cdot f_0 &= &0\cdot 1,\\ z\cdot f_1 &= &1\cdot z,\\ z\cdot f_n & = &(f_+f_)\cdot z^n, \quad n\geq2.\\ \end $$

Складываем все строчки:

На третьем шаге алгоритма приводим все суммы к замкнутому виду:

откуда выводим искомое выражение для производящей функции:

Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:

Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:

Преобразуем данное выражение, используя то, что

Способ 2. Характеристическое уравнение

Тогда общее решение однородного рекуррентного уравнения имеет вид:

Решая систему, найдем

Итоговое выражение для последовательности чисел Фибоначчи:

Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.

Примеры решений

Источник

Что значит «рекуррентная формула»

Энциклопедический словарь, 1998 г.

Большая Советская Энциклопедия

Последовательность jn ≈ т. н. чисел Фибоначчи ≈ задаётся формулами:

j0 = 0, j1 = 1, jn+2 = jn+1 + jn (n > 0)

Последняя из них является Р. ф.; она позволяет вычислить j2, j3 и дальнейшие члены этой последовательности.

Нетрудно показать, что для n ³ 2 выполняется соотношение

Это ≈ Р. ф., сводящая вычисление In к вычислению /0 или l1 в зависимости от чётности n.

Р. ф. обычно даёт удобную вычислительную схему для нахождения членов последовательности друг за другом. Однако иногда, исходя из Р. ф., стремятся получить «явное» выражение для n-го члена последовательности, описываемой этой Р. ф. Так, в случае чисел Фибоначчи

Википедия

Рекуррентная формула — формула вида a = f(n, a, a, …, a), выражающая каждый член последовательности a через p предыдущих членов и возможно номер члена последовательности n.

Рекуррентным уравнением называется уравнение, связывающее несколько подряд идущих членов некоторой числовой последовательности. Последовательность, удовлетворяющая такому уравнению, называется рекуррентной последовательностью.

Транслитерация: rekurrentnaya formula
Задом наперед читается как: алумроф яантнеррукер
Рекуррентная формула состоит из 19 букв

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *