Что значит разность двух сторон равна 7
Периметр параллелограмма равен 42 см. найдите стороны параллелограмма, если разность двух сторон равна 7 см
надеюсь будет понятно.
Пусть имеем правильную треугольную пирамиду АВСД со стороной основания а.
Высота Н = ДО = √7, высота hбг = ВЕ к ребру L = ДС = √5.
Высота основания СК = а√3/2.
Точка О как основание высоты пирамиды делит СК в отношении 2 : 1 от точки С. То есть КО = (1/3)*(а√3/2) = а√3/6, а СО = (2/3)*(а√3/2) = а√3/3.
Найдём апофему А = КД.
А = √(КО² + Н²) = √((а²*3/36) + 7) = √(84 + а²)/2√3.
Боковое ребро L = √(H² + OC²) = √(7 + (3a²/9)) = √(21 + a²)/√3.
Далее используем свойство двух высот в треугольнике.
а*А = L*hбг или L = aA/√5 = а*√(84 + а²)/2√3.
Приравняем величину L: а*√(84 + а²)/2√3 = √(21 + a²)/√3.
Знаменатели можно сократить на √3, затем возведём в квадрат,
Получим а² = 6 или а = √6. Подставим в уравнение бокового ребра:
L = √(21 + 6)/√3 = √27/√3 = √= 3.
Стороны будут 3*11=33, 11*7=77 и 5*11=55
1) Достроим треугольник ABC до прямоугольного треугольника DBC.
2) Сначала нужно найти площадь треугольника DBC, а потом вычесть из площади этого треугольника площадь треугольника DBA.
По рисунку видно, что DC=7cм, а BD=2см.
Подставим эти значения в формулу:
По рисунку видно, что DA=1см, а BD=2см, следовательно,
5) Чтобы найти площадь треугольника ABC, вычтем из площади треугольника DBC площадь треугольника DBA:
Ответ: 6 см.
Все дополнительные построения на рисунке во вложении: