Что значит разложить многочлен по степеням двучлена

Разложить многочлен по степеням

Коэффициенты многочлена разделенные пробелами
Коэффицент C в биноме вида x-C
Заданный многочлен имеет вид
если разложим по степеням вида
Получим многочлен

В данном материале мы рассмотрим как можно разложить произвольный многочлен от одной переменной по степеням

Практические задачи, которые попадаются в учебниках и которые можно решить с помощью бота, выглядят вот так:

Разложить многочлен по степеням x многочлен где

Сначала рассмотрим последний пример

Разложим по методу Горнера заданный многочлен на вот такое значение

Почему стоит минус, а не плюс как в исходной задаче, спросите Вы. Не торопитесь, всему своё время.

и разделим уже полученный многочлен опять на

Еще раз проделаем операцию деления

Еще раз проделаем операцию деления

получим и остаток 26

Еще раз проделаем операцию деления

получим и остаток 10

Еще раз проделаем операцию деления

Теперь составим из наших остатков вот такой многочлен

Вот это нам будет считать бот автоматически, а две последующие строки мы делаем вручную

Теперь заменим и получим

Бот выдает результирующий многочлен с несколько избыточным количеством скобок. Не думаю что это у Вас вызовет какое либо раздражение.

Разложение по степеням многочлена может осуществляется так же и в комплексной плоскости, то есть все коэффициенты могут быть комплексными числами.

Давайте рассмотрим пример первый

Логично предположить что нам числитель необходимо разложить по степеням

и наш ответ будет такой

Если Вы попали на эту страницу, ища ответ на вопрос наподобие вот этого » как разложить в произведение множителей число 1800″ то Вам несомненно стоит прочитать материал Простые множители. Теория чисел

Источник

Тема урока «Теорема Безу. Схема Горнера и ее применение»

Презентация к уроку

Тип урока: Урок усвоения и закрепления первичных знаний.

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть Fn(x)= a n xn +a n-1x n-1 +. + a1x +a0 многочлен относительно x степени n, где a0, a1. an –данные числа, причем a0 не равно 0. Если многочлен Fn(x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Qn-1(x) степени n-1, остаток R есть число, при этом справедливо равенство Fn(x)=(x-a) Qn-1(x) +R. Многочлен Fn(x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена Fn(x) на двучлен (x-a) равен значению многочлена Fn(x) при x=a, т.е. R= Pn(a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a.

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

Приравняем коэффициенты при одинаковых степенях:

Демонстрация схемы Горнера на примере.

Разложение многочлена по степеням двучлена.

Любой многочлен Fn(x) степени n Что значит разложить многочлен по степеням двучлена1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p-ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d, записанное в той же p-ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d-ичными цифрами числа Ad, начиная от младшего разряда к старшему. Все действия необходимо проводить в p-ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” — сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера. [1]

Домашнее задание. Предлагается выполнить два задание.

Источник

Разложение многочлена способом группировки

Что значит разложить многочлен по степеням двучлена

Основные понятия

Мы знаем, что слово «множитель» происходит от слова «умножать».

Возьмем, например, число 12. Чтобы разложить его на множители, нужно написать его по-другому, а именно в виде «произведения» множителей.

Число 12 можно получить, если умножить 2 на 6. А 6 можно представить, как произведение 2 и 3. Вот так:

Что значит разложить многочлен по степеням двучлена

Так выглядит пошаговое разложение на множители. Числа, которые подчеркнуты на картинке — это множители, которые дальше разложить уже нельзя.

Разложение многочлена на множители — это преобразование многочлена в произведение, которое равно данному многочлену.

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

5 способов разложения многочлена на множители

Способ группировки множителей

Разложение на множители методом группировки возможно, когда многочлены не имеют общего множителя для всех членов многочлена.

Этот способ применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку. И тогда исходный многочлен будет представлен в виде произведения, что значительно облегчает задачу.

Разложить на множители методом группировки можно в три этапа:

Объединить члены многочлена в группы можно по-разному. И ее всегда группировка может быть удачной для последующего разложения на множители. В таком случае нужно продолжить эксперимент и попробовать объединить в группы другие члены многочлена.

Чтобы понять эти сложные выражения, применим правило группировки множителей при решении примеров. Рассмотрим два способа.

Заметим, что в первой группе повторяется p, а во второй — d.

Вынесем в первой группе общий множитель p, а во второй общий множитель d.

Вынесем его за скобки:

Группировка множителей выполнена.

Заметим, что в первой группе повторяется u, а во второй — b.

Вынесем в первой группе общий множитель u, а во второй общий множитель b.

Заметим, что общий множитель (p + d).

Вынесем его за скобки:

Группировка множителей выполнена.

От перестановки мест слагаемых сумма не меняется, поэтому оба ответа верны:

Вот так работает алгоритм разложения многочлена на множители способом группировки. Продолжим практиковаться на примерах.

Иногда для вынесения общего многочлена нужно заменить все знаки одночленов в скобках на противоположные. Для этого за скобки выносится знак минус, а в скобках у всех одночленов меняем знаки на противоположные.

Проверим как это на следующем примере.

Курсы ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Источник

Разложение многочлена на множители

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

Следствие из теоремы Безу

Разложение на множители квадратного трехчлена

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Произвести разложение квадратного трехчлена на множители.

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

Произвести разложение многочлена 2 x 2 + 1 на множители.

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

Получив корни, запишем

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Данный способ считается вынесением общего множителя за скобки.

Разложение на множители многочлена с рациональными корнями

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Этот случай имеет место быть для дробно-рациональных дробей.

4 f ( x ) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g ( y )

Когда получившаяся функция вида g ( y ) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

Перейдем к вычислению функции g ( y ) в этих точка для того, чтобы получить в результате ноль. Получаем, что

Что значит разложить многочлен по степеням двучлена

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 ( 2 x 2 + 14 x + 6 ) = = 2 x + 5 2 ( x 2 + 7 x + 3 )

Отсюда следует, что

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

После разложения на множители получим, что

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Необходимо выполнить преобразование выражения к виду

После применения разности квадратов, получим

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

Займемся преобразованием выражения. Получаем, что

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Источник

Разложение многочлена на множители

Разложить многочлен на множители означает представить его в виде произведения двух или нескольких многочленов.

Примером разложения многочлена на множители является вынесение общего множителя за скобки, поскольку исходный многочлен обращается в произведение двух сомножителей, один из которых является одночленом, а другой многочленом.

Разложение многочлена на множители способом вынесения общего множителя за скобки

При вынесении общего множителя за скобки образуется произведение из двух сомножителей, один из которых является одночленом, а другой многочленом. Например:

В рамках изучения многочленов, одночлен принято считать многочленом, состоящим из одного члена. Поэтому, когда в многочлене выносится за скобки общий множитель, то говорят что исходный многочлен представлен в виде произведения многочленов.

Что значит разложить многочлен по степеням двучлена

Разложение многочлена на множители способом группировки

Некоторые многочлены содержат группу членов, имеющих общий множитель. Такие группы можно заключать в скобки и далее выносить общий множитель за эти скобки. В результате получается разложение исходного многочлена на множители, которое называют разложением на множители способом группировки.

Рассмотрим следующий многочлен:

Далее в многочлене ax + ay + 3 x + 3 y члены 3x и 3y имеют общий множитель 3. Выпишем эти члены и тоже заключим их в скобки:

Теперь соединим выражения (ax + ay) и (3x + 3y) знаком «плюс»

Что значит разложить многочлен по степеням двучлена

Далее замечаем, что двучлен (x + y) является общим множителем. Вынесем его за скобки. Продолжаем решение в исходном примере. В результате получим:

Что значит разложить многочлен по степеням двучлена

Запишем решение покороче, не расписывая подробно, как каждый член был разделен на общий множитель. Тогда решение получится более компактным:

Что значит разложить многочлен по степеням двучлена

Пример 2. Разложить многочлен 9x + ax − 9y − ay на множители способом группировки.

В первой группе (9x − 9y) вынесем за скобки общий множитель 9. Во второй группе (ax − ay) вынесем за скобки за скобки общий множитель a

Далее вынесем за скобки двучлен (x − y)

Пример 3. Разложить многочлен ab − 3b + b 2 − 3a на множители способом группировки.

Во втором произведении b(−3 + b) в сомножителе (−3 + b) изменим порядок следования членов. Тогда получим b(b − 3)

Теперь вынесем за скобки общий множитель (b − 3)

Пример 4. Разложить многочлен x 2 y + x + xy 2 + y + 2xy + 2 на множители способом группировки.

Сгруппируем первый член многочлена со вторым, третий с четвёртым, пятый с шестым:

Что значит разложить многочлен по степеням двучлена

Что значит разложить многочлен по степеням двучлена

Далее замечаем, что многочлен (xy + 1) является общим множителем. Вынесем его за скобки:

Что значит разложить многочлен по степеням двучлена

Разложение многочлена на множители по формуле квадрата суммы двух выражений

Формулы сокращённого умножения, которые мы рассматривали в прошлом уроке, можно применять для разложения многочленов на множители.

Вспомним, как выглядит формула квадрата суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 2 представляет собой перемножение двух сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен 4x 2 + 12xy + 9y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 + 12x + 36

Разложение многочлена на множители по формуле квадрата разности двух выражений

Как и по формуле квадрата суммы двух выражений, многочлен можно разложить на множители по формуле квадрата разности двух выражений.

Формула квадрата разности двух выражений выглядит так:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение двух сомножителей, каждый из которых равен (a − b), то многочлен вида a 2 − 2ab + b 2 можно разложить на множители (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 9x 2 − 12xy + 4y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − 4x + 4

Воспользуемся формулой квадрата разности двух выражений:

Разложение многочлена на множители по формуле куба суммы двух выражений

Вспомним, как выглядит формула куба суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 3 представляет собой перемножение трёх сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен m 3 + 6m 2 n + 12mn 2 + 8n 3

Прежде чем применять формулу куба суммы, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб суммы двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена m

Последний член 8n 3 является результатом возведения в куб одночлена 2n

Второй член 6m 2 n является утроенным произведением квадрата первого выражения m и последнего 2n

Третий член 12mn 2 является утроенным произведением первого выражения m и квадрата последнего выражения 2n

Пример 2. Разложить на множители многочлен 125x 3 + 75x 2 + 15x + 1

Первый член данного многочлена является результатом возведения в куб одночлена 5x

Последний член 1 является результатом возведения в куб одночлена 1

Второй член 75x 2 является утроенным произведением квадрата первого выражения 5x и последнего 1

Третий член 15x является утроенным произведением первого выражения 5x и квадрата второго выражения 1

Разложение многочлена на множители по формуле куба разности двух выражений

Как и по формуле куба суммы двух выражений, многочлен можно разложить на множители по формуле куба разности двух выражений.

Вспомним, как выглядит формула куба разности двух выражений:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение трёх сомножителей, каждый из которых равен (a − b), то многочлен вида a 3 − 3a 2 b + 3ab 2 − b 3 можно разложить на множители (a − b), (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 64 − 96x + 48x 2 − 8x 3

Прежде чем применять формулу куба разности, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб разности двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена 4

Последний член 8x 3 является результатом возведения в куб одночлена 2x

Второй член 96x является утроенным произведением квадрата первого выражения 4 и последнего 2x

Третий член 48x 2 является утроенным произведением первого выражения 4 и квадрата второго выражения 2x

3 × 4 × (2x) 2 = 3 × 4 × 4x 2 = 48x 2

Пример 2. Разложить на множители многочлен 27 − 135x + 225x 2 − 125x 3

Первый член данного многочлена является результатом возведения в куб одночлена 3

Последний член 125 является результатом возведения в куб одночлена 5x

Второй член 135x является утроенным произведением квадрата первого выражения 3 и последнего 5x

Третий член 225x 2 является утроенным произведением первого выражения 3 и квадрата второго выражения 5x

3 × 3 × (5x) 2 = 3 × 3 × 25x 2 = 225x 2

Разложение многочлена на множители по формуле разности квадратов двух выражений

Вспомним, как выглядит формула умножения разности двух выражений на их сумму:

Если в этой формуле поменять местами левую и правую часть, то получим:

Эту формулу называют разностью квадратов. Она позволяет разложить выражение вида a 2 − b 2 на множители (a − b) и (a + b).

Пример 1. Разложить на множители многочлен 16x 2 − 25y 2

Первый член 16x 2 является результатом возведения в квадрат одночлена 4x

Второй член 25y 2 является результатом возведения в квадрат одночлена 5y

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − y 2

Чаще всего члены, из которых состоит исходная разность, являются результатами возведения во вторую степень каких-нибудь одночленов. Чтобы узнать чему в таком случае равны a и b, нужно как в первом примере представить члены исходной разности в виде одночленов возведённых в квадрат.

Полностью решение можно записать так:

Несмотря на простоту разложения по формуле разности квадратов, частые ошибки приходятся именно на эти задачи. Чтобы убедиться, что задача решена правильно, не мешает выполнить умножение в получившемся разложении. Если задача решена правильно, то должен получиться изначальный многочлен.

Проверим умножением данный пример. У нас должен получиться многочлен 4x 4 − 9y 6

Пример 4. Разложить на множители многочлен 81 − 64

Представим члены исходной разности в виде одночленов возведенных в квадрат. Далее воспользуемся формулой разности квадратов:

81 − 64 = 9 2 − 8 2 = (9 − 8)(9 + 8)

Разложение многочлена на множители по формуле сумме кубов двух выражений

Мы помним, что произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую суммой кубов двух выражений:

Пример 1. Разложить на множители многочлен 27x 3 + 64y 3

Представим члены 27x 3 и 64y 3 в виде одночленов, возведённых в куб

Пример 2. Разложить на множители многочлен 125 + 8

Представим члены 125 и 8 в виде одночленов, возведённых в куб:

Далее воспользуемся формулой суммы кубов:

125 + 8 = 5 3 + 2 3 = (5 + 2)(25 − 10 + 4)

Разложение многочлена на множители по формуле разности кубов двух выражений

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую разностью кубов двух выражений:

Пример 1. Разложить на множители многочлен 64x 3 − 27y 3

Представим члены 64x 3 и 27y 3 в виде одночленов, возведённых в куб:

Пример 2. Разложить на множители многочлен 64 − 27

Представим члены 64 и 27 в виде одночленов, возведённых в куб:

64 − 27 = 4 3 − 3 3 = (4 − 3)(16 + 12 + 9)

Пример 3. Разложить на множители многочлен 125x 3 − 1

Представим члены 125x 3 и 1 в виде одночленов, возведённых в куб:

Разложение многочлена на множители различными способами

К некоторым многочленам можно применять различные способы разложения на множители. Например, к одному многочлену можно применить способ вынесения общего за скобки, а затем воспользоваться одной из формул сокращённого умножения.

Пример 1. Разложить на множители многочлен ax 2 − ay 2

При этом в скобках образовался многочлен, который является разностью квадратов. Применив формулу разности квадратов. Тогда получим:

Пример 2. Разложить на множители многочлен 3x 2 + 6xy + 3y 2

Вынесем за скобки общий множитель 3

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *