Что значит рациональные уравнения

Простейшие рациональные уравнения. Примеры

\(\dfrac<4x^2-1>=\dfrac<3-x-x^2> <4x^2-1>\quad \Leftrightarrow \quad \dfrac<4x^2-1>=0\quad \Leftrightarrow \quad \dfrac<2x^2+5x-3><4x^2-1>=0 \quad \Leftrightarrow\)

Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

Источник

Решение рациональных уравнений

Вы будете перенаправлены на Автор24

Рациональные уравнения — это уравнения, содержащие в себе рациональные выражения.

Теперь рассмотрим более подробно, что же такое рациональные уравнения.

Как мы уже упомянули выше, рациональные уравнения — это уравнения, содержащие в себе рациональные выражения и переменные.

Соответственно тому, на каком именно месте стоит переменная в рациональном уравнении, оно может быть либо дробным рациональным уравнением, либо целым рациональным уравнением.

Дробные уравнения могут содержать дробь с переменной только в какой-то одной части уравнения, тогда как целые уравнения не содержат дробных выражений с переменной.

Стоит отметить, что дробно-рациональными уравнениями называются только уравнения, содержащие дробь в знаменателе, так как уравнения, содержащие дробные выражения без переменных, легко сводятся к линейным целым уравнениям.

Как решать рациональные уравнения?

В зависимости от того, имеете ли вы дело с целым рациональным уравнением или с дробным, применяются несколько разные алгоритмы для решения.

Алгоритм решения целых рациональных уравнений

Готовые работы на аналогичную тему

Как решать дробно-рациональные уравнения?

В случае с дробными рациональными уравнениями порядок решения похож на алгоритм для решения целых рациональных, то есть сохраняются пункты 1-4, но после нахождения предполагаемых корней в случае использования неравносильных преобразований корни требуется проверить, подставив в уравнение.

Теперь, когда вся дробь имеет общий знаменатель, от него можно избавиться:

Воспользуемся теоремой Виета для решения получившегося квадратного уравнения:

Так как преобразование, использовавшееся для упрощения уравнения, не является равносильным, полученные корни необходимо проверить в исходном уравнении, для этого подставим их:

В случае если дробно-рациональное уравнение имеет довольно сложную форму, для его дальнейшего упрощения и решения возможно использовать замену части уравнения на новую переменную, наверняка вы уже видели примеры таких дробно-рациональных уравнений:

Через дискриминант вычислим корни:

Преобразования для упрощения формы уравнения

Как вы уже могли увидеть выше, для решения рациональных уравнений используют различные преобразования.

Различают преобразования уравнений двух видов: равносильные (тождественные) и неравносильные.

Преобразования называются равносильными, если они приводят к уравнению нового вида, корни которого такие же, как у первоначального.

Тождественные преобразования, которые можно использовать для изменения вида первоначального уравнения без каких-либо проверок в дальнейшем, следующие:

Неравносильными преобразованиями называются преобразования, в ходе которых могут появиться посторонние корни. К неравносильным преобразованиям относят:

Корни рациональных уравнений, решённых с помощью неравносильных преобразований, необходимо проверять подстановкой в исходное уравнение, так как при неравносильных преобразованиях могут появиться посторонние корни. Не всегда неравносильные преобразования приводят к появлению посторонних корней, но всё же необходимо это учитывать.

Решение рациональных уравнений со степенями больше двух

Наиболее часто используемыми методами для решения уравнений со степенями больше двух являются метод замены переменной, рассмотренный нами выше на примере дробно-рационального уравнения, а также метод разложения на множители.

Рассмотрим более подробно метод разложения на множители.

Вынесем общие множители:

Уравнения, в которых коэффициент при переменной со старшей степенью равен единице, называются приведёнными.

Для приведённых уравнений справедливо следующее:

Если такое уравнение с целыми коэффициентами при переменных имеет рациональный корень, то этот корень непременно является целым числом.

Благодаря такому свойству этих уравнений их можно решать перебором целых делителей свободного члена.

Для тех, кто не помнит: свободный член уравнения — это член уравнений, не содержащий при себе в качестве множителя переменную. При этом найдя один из корней такого уравнения, его можно использовать для дальнейшего разложения уравнения на множители.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 05 03 2021

Источник

Что значит рациональные уравнения

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Что значит рациональные уравнения

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Что значит рациональные уравнения

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

Что значит рациональные уравнения

при х = –9 не имеет смысла, так как при х = –9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение – это рациональное уравнение, в котором левая и правая части – целые выражения.

Что значит рациональные уравнения

Дробное рациональное уравнение – это рациональное уравнение, в котором или левая, или правая части – дробные выражения.

Что значит рациональные уравнения

Рассмотрим решение целого рационального уравнения.

Что значит рациональные уравнения

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

Что значит рациональные уравнения

дополнительный множитель для дроби

Что значит рациональные уравнения

дополнительный множитель для дроби

Что значит рациональные уравнения

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

Что значит рациональные уравнения

которое равносильно данному уравнению

Что значит рациональные уравнения

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Что значит рациональные уравнения

Приведем подобные члены многочлена и получим

Что значит рациональные уравнения

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

Рассмотрим решение дробного рационального уравнения.

Что значит рациональные уравнения

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х – 1.

Он равен их произведению (х + 7)(х – 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х – 1) делим на каждый знаменатель. Дополнительный множитель для дроби

Что значит рациональные уравнения

дополнительный множитель для дроби

Что значит рациональные уравнения

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х – 1)(х – 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

Что значит рациональные уравнения

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

Что значит рациональные уравнения

5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

Что значит рациональные уравнения

6.Приведем подобные члены многочлена:

Что значит рациональные уравнения

7.Можно обе части разделить на –1. Получим квадратное уравнение:

Что значит рациональные уравнения

8.Решив его, найдем корни

Что значит рациональные уравнения

Так как в уравнении

Что значит рациональные уравнения

левая и правая части – дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = –27 общий знаменатель (х + 7)(х – 1) не обращается в нуль, при х = –1 общий знаменатель также не равен нулю.

Следовательно, оба корня –27 и –1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Что значит рациональные уравнения

Знаменатель дроби правой части уравнения разложим на множители

Что значит рациональные уравнения

Что значит рациональные уравнения

Найдем общий знаменатель для знаменателей (х – 5), х, х(х – 5).

Им будет выражение х(х – 5).

теперь найдем область допустимых значений уравнения

Что значит рациональные уравнения

Для этого общий знаменатель приравняем к нулю х(х – 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

Что значит рациональные уравнения

дополнительным множителем для дроби

Что значит рациональные уравнения

а дополнительный множитель дроби

Что значит рациональные уравнения

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х – 3) + 1(х – 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 – 3х + х – 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 – 3х + х – 5 – х – 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 – 3х – 10 = 0. Решив его, найдем корни х1 = –2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х – 5) обращается в нуль. Следовательно, корнем нашего уравнения

Что значит рациональные уравнения

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Источник

Решение целых и дробно рациональных уравнений

Продолжаем разговор про решение уравнений. В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Что такое рациональные уравнения?

В начале 8 класса на уроках алгебры начинается всестороннее изучение рациональных выражений. А вскоре, естественно, начинают встречаться уравнения, содержащие рациональные выражения в своих записях. Такие уравнения назвали рациональными. Сформулируем озвученную информацию в виде определения рациональных уравнений.

Иногда встречается определение в немного другой формулировке:

Рациональными уравнениями называют уравнения, в левой части которого находится рациональное выражение, а в правой – нуль.

Здесь стоит заметить, что по сути оба приведенных определения эквивалентны, так как для любых рациональных выражений P и Q уравнения P=Q и P−Q=0 являются равносильными уравнениями.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Рациональное уравнение называют целым, если и левая, и правая его части являются целыми рациональными выражениями.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2 )=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной. В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Рассмотрим еще пример.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Его корень очевиден – это нуль.

В заключение добавим, что совсем не обязательно слепо придерживаться приведенного алгоритма решения дробных рациональных уравнений, хотя он и является универсальным. Просто иногда другие равносильные преобразования уравнений позволяют прийти к результату быстрее и проще.

Но можно поступить и иначе, например, так.

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Источник

Рациональные уравнения

Что значит рациональные уравнения Что значит рациональные уравнения

Всего получено оценок: 103.

Всего получено оценок: 103.

Рациональные уравнения – это еще один способ запутать учеников. Их очень часто путают с иррациональными и дробно-рациональными, а потому путаются в теории. Давайте разберем подробно каждый из видов уравнения: рационального, дробно-рационального и иррационального.

Что такое рациональное уравнение?

Рациональным уравнением или рациональным выражением в математике называются выражения, в которых нет знаков радикала или, выражаясь проще, корней. Любое выражение с корнем считается иррациональным.

Таким образом все уравнения разделяются на две большие части. Рациональными уравнениями считаются, уже привычные, линейные уравнения, степенные уравнения, включая квадратные, а так же дробные уравнения.

Каждый из подвидов решается по-разному. Линейные уравнения решаются с помощью перенесения множителей из одной части уравнения в другую, квадратные при помощи дискриминанта, по теореме Виета или через вынесение общих множителей, если уравнение неполное.

Степенное уравнение проще всего решить графически:

Зачастую этот способ является единственно возможным при решении степенных уравнений, хоть и не столь точным, как алгебраический метод.

Алгебраическим методом решения уравнений называется решение при помощи алгебраических преобразований.

Иррациональные уравнения

Что такое иррациональные уравнения? Это уравнения, содержащие в себе выражения под знаком корня любой степени. Для этих уравнений обязательно выполнение проверки и введение ОДЗ функции.

ОДЗ – это интервал значений, которые может принимать х.

Приведем пример простейшего иррационального уравнения.

$x=<49\over3>$ – вот и все решение. Иногда для решения иррациональных уравнений так же прибегают к графическому способу.

Дробно-рациональные уравнения

Дробно-рациональные уравнения – это уравнения, содержащие дробь. Разделение можно назвать условным, поскольку обычно после пары преобразований, уравнения сводятся к линейным или степенным, но есть и исключения.

В любом случае, для этого вида рациональных уравнений также важно ОДЗ.

Каково ОДЗ дробей? Оно должно включать единственное условие существования дроби: знаменатель не должен равняться нулю.

Специально, чтобы проверить возможность существования того или иного корня прочерчивают координатную прямую и на ней отмечают отрезками ОДЗ и получившиеся корни. Если корни не входят в ОДЗ их исключают из решения.

Что значит рациональные уравнения

Что мы узнали?

Мы дали определение рациональных уравнений, выделили подвиды рациональных уравнений и поговорили о возможностях их решения. Отдельно поговорили о иррациональных уравнениях и дробно-рациональных уравнениях, отметили необходимость ОДЗ в некоторых видах уравнений и привели небольшой пример.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *