Что значит противолежащие углы в параллелограмме

Свойства сторон и углов параллелограмма

(Свойства сторон и углов параллелограмма)

В параллелограмме противолежащие стороны равны и противолежащие углы равны.

Что значит противолежащие углы в параллелограмме

Проведем в параллелограмме ABCD диагональ BD.

Рассмотрим треугольники ABD и CDB.

1) сторона BD — общая

2) ∠ ABD= ∠ CDB (как внутренние накрест лежащие при AB∥CD и секущей BD)

3) ∠ ADB= ∠ CBD (как внутренние накрест лежащие при AD∥BC и секущей BD)

Из равенства треугольников следует равенство соответствующих сторон:

и равенство соответствующих углов:

В пунктах 2) и 3) обосновано, что ∠ ABD= ∠ CDB и ∠ ADB= ∠ CB.

∠ ABC= ∠ ABD+ ∠ CBD= ∠ CDB+ ∠ ADB= ∠ ADC,

Что и требовалось доказать.

II. Свойство углов параллелограмма, прилежащих к одной стороне.

Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º.

Это свойство непосредственно вытекает из того, что углы, прилежащие к одной стороне параллелограмма, являются внутренними односторонними углами при параллельных прямых.

Для параллелограмма ABCD:

∠ A+ ∠ B=180º (как внутренние односторонние при AD∥BC и секущей AB;

∠ C+ ∠ D=180º (как внутренние односторонние при AD∥BC и секущей CD;

∠ A+ ∠ D=180º (как внутренние односторонние при AB∥CD и секущей AD;

∠ B+ ∠ C=180º (как внутренние односторонние при AB∥CD и секущей BC.

Источник

Параллелограмм

Определение 1. Параллелограммом называется четырехугольник, у которого противоположные стороны параллельны.

Что значит противолежащие углы в параллелограмме

Свойства параллелограмма

Свойство 1. В параллелограмме противоположные углы равны и противоположные стороны равны.

Доказательство. Рассмотрим параллелограмм ABCD (Рис.2).

Что значит противолежащие углы в параллелограмме

Диагональ AC разделяют параллелограмм на два треугольника ACB и ACD. \( \small \angle 1=\angle 2 \) поскольку эти углы накрест лежащие, при рассмотрении параллельных прямых AB и CD пересеченные секущей AC (см. теорему 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично \( \small \angle 3=\angle 4 \), если рассмотреть параллельные прямые AD и BC пересеченные секущей AC. Тогда треугольники ACB и ACD равны по одной стороне и двум прилежащим углам: AC общая, \( \small \angle 1=\angle 2 \), \( \small \angle 3=\angle 4 \) (см. статью Треугольники. Признаки равенства треугольников). Поэтому \( \small AB=CD, \;\; AD=BC, \;\; \angle B=\angle D. \)

Из рисунка Рис.2 имеем: \( \small \angle A=\angle 1+\angle 3, \;\; \angle C=\angle 2+\angle 4. \) Учитывая, что \( \small \angle 1=\angle 2 \) и \( \small \angle 3=\angle 4 \), получим: \( \small \angle A=\angle C. \)Что значит противолежащие углы в параллелограмме

Свойство 2. Диагонали параллелограмма точкой пересечения разделяются пополам.

Доказательство. Рассмотрим параллелограмм ABCD (Рис.3) и пусть O точка пересечения диагоналей AC и BD. \( \small \angle 1=\angle 2 \) поскольку эти углы накрест лежащие, при рассмотрении параллельных прямых AB и CD пересеченные секущей AC. \( \small \angle 3=\angle 4 \), если рассмотреть параллельные прямые AB и CD пересеченные секущей BD. Поскольку в параллелограмме противоположные стороны равны: AB=CD (Свойство 1), то треугольники ABO и CDO равны по стороне и прилежашим двум углам. Тогда AO=OC и BO=OD.Что значит противолежащие углы в параллелограмме

Что значит противолежащие углы в параллелограмме

Признаки параллелограмма

Признак 1. Если в четырехугольнике две стороны параллельны и равны, то этот четырехугольник является параллелограммом.

Что значит противолежащие углы в параллелограмме

Доказательство. Рассмотрим параллелограмм ABCD. Пусть AB=CD и AB || CD. Проведем диагональ AC (Рис.4). Поскольку AB || CD, то \( \small \angle 1=\angle 2 \) как накрест лежащие углы − при рассмотрении параллельных прямых AB и CD пересеченных секущей AC. Тогда треугольники ACB и ACD равны, по двум сторонам и углу между ними. Действительно, AB=CD, AC− общая сторона \( \small \angle 1=\angle 2 \). Но тогда \( \small \angle 3=\angle 4. \) Рассмотрим прямые AD и BC, пересеченные секущей AC. Поскольку \( \small \angle 3 \) и \( \small \angle 4 \) являются накрест лежашими углами, то по теореме 1 статьи Параллельные прямые. Признаки параллельности прямых, эти прямые параллельны. Таким образом, в четырехугольнике противоположные стороны попарно параллельны (AB || CD, AD || BC) и, значит, данный четырехугольник параллелограмм. Что значит противолежащие углы в параллелограмме

Признак 2. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник является параллелограммом.

Доказательство. Рассмотрим параллелограмм ABCD (Рис.4). Проведем диагональ AC (Рис.4). Рассмотрим треугольники ACB и ACD. Эти треугольники равны по трем сторонам (см. статью Треугольники. Признаки равенства треугольников). Действительно. AC − общая для этих треугольников и по условию AB = CD, AD = BC. Тогда \( \small \angle 1=\angle 2 \). Отсюда следует AB || CD. Имеем, AB = CD, AB || CD и по признаку 1 четырехугольник ABCD является параллелограммом.Что значит противолежащие углы в параллелограмме

Признак 3. Если в четырехугольнике диагонали пересекаются и точкой пересечения разделяются пополам, то данный четырехугольник − параллелограмм.

Что значит противолежащие углы в параллелограмме

Доказательство. Рассмотрим четырехугольник ABCD (Рис.5). Пусть диагонали четырехугольника пересекаются в точке O и точкой пересечения делятся пополам:

Что значит противолежащие углы в параллелограмме

Углы AOB и COD вертикальные, следовательно \( \small \angle AOB=\angle COD \). Тогда треугольники AOB и COD равны по двум сторонам и углу меду ними:

Что значит противолежащие углы в параллелограмме, Что значит противолежащие углы в параллелограмме

Тогда AB = CD и \( \small \angle 1=\angle 2 \). Но по признаку параллельности прямых следует, что AB || CD (теорема 1 статьи Параллельные прямые. Признаки параллельности прямых). Получили:

Что значит противолежащие углы в параллелограмме

и, по признаку 1 четырехугольник ABCD − параллелограмм.Что значит противолежащие углы в параллелограмме

Источник

Параллелограмм. Свойства и признаки параллелограмма

Определение параллелограмма

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Что значит противолежащие углы в параллелограмме

Свойства параллелограмма

Что значит противолежащие углы в параллелограмме

1. Противоположные стороны параллелограмма попарно равны

2. Противоположные углы параллелограмма попарно равны

Что значит противолежащие углы в параллелограмме

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

Что значит противолежащие углы в параллелограмме 5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

Что значит противолежащие углы в параллелограмме

6. Точка пересечения диагоналей является центром симметрии параллелограмма

Что значит противолежащие углы в параллелограмме

7. Диагонали Что значит противолежащие углы в параллелограммепараллелограмма и стороны
Что значит противолежащие углы в параллелограммесвязаны следующим соотношением: Что значит противолежащие углы в параллелограмме

Что значит противолежащие углы в параллелограмме

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

Признаки параллелограмма

Четырехугольник Что значит противолежащие углы в параллелограммеявляется параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны: Что значит противолежащие углы в параллелограмме

2. Противоположные углы попарно равны: Что значит противолежащие углы в параллелограмме

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны: Что значит противолежащие углы в параллелограмме

5. Что значит противолежащие углы в параллелограмме

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:


Что значит противолежащие углы в параллелограммеФормулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

Источник

Параллелограмм: свойства и признаки

Что значит противолежащие углы в параллелограмме

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

Как найти площадь параллелограмма:

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Что значит противолежащие углы в параллелограмме

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

Шаг 3. Из равенства треугольников также следует:

Что значит противолежащие углы в параллелограмме

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Что значит противолежащие углы в параллелограмме

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Источник

Углы параллелограмма

Решение задач на углы параллелограмма опирается на свойства параллелограмма.

Сумма двух углов параллелограмма, прилежащих к одной стороне, равны 180º (так как они являются внутренними односторонними при параллельных прямых (противолежащих сторонах параллелограмма) и секущей (пересекающей их стороне).

Противоположные углы параллелограмма равны.

Поэтому, если в задаче дана сумма углов параллелограмма (не 180º ), то речь идет о его противолежащих углах.

Если сказано, что один из углов параллелограмма больше или меньше другого на некоторое количество градусов (или в несколько раз, или углы относятся в некотором отношении), то речь идет об углах, прилежащих к одной стороне параллелограмма.

Если в задаче требуется найти все углы параллелограмма, в начале изучения темы ищут все четыре угла.

В дальнейшем обычно находят только два из них (прилежащие к одной стороне), поскольку другие два им равны.

Рассмотрим некоторые задачи на нахождение углов параллелограмма.

Найти углы параллелограмма, если один из его углов на 40º больше другого.

Что значит противолежащие углы в параллелограмме

Дано: ABCD — параллелограмм,

Пусть ∠A=хº, тогда ∠B=х+40º.

Так как противоположные стороны параллелограмма параллельны, то

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

Значит, ∠A=70º, тогда ∠B=70+40=110º.

∠C=∠A=70º, ∠D=∠B=110º (как противолежащие углы параллелограмма).

Ответ: 70º, 70º, 110º, 110º.

Найти углы параллелограмма, если два из них относятся как 2:3.

Что значит противолежащие углы в параллелограмме

Дано: ABCD — параллелограмм,

Пусть k — коэффициент пропорциональности. Тогда ∠A=2kº, ∠B=3kº.

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

Составим уравнение и решим его:

Значит, ∠A=2∙36=72º, ∠B=3∙36=108º.

∠C=∠A=72º, ∠D=∠B=108º (как противолежащие углы параллелограмма).

Ответ: 72º, 72º, 108º, 108º.

Найти углы параллелограмма, если сумма двух из них равна 150º.

Что значит противолежащие углы в параллелограмме

Дано : ABCD — параллелограмм,

∠A=∠C=150:2=75º (как противолежащие углы параллелограмма).

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

∠D=∠B=105º (как противолежащие углы параллелограмма).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *