Что значит построить и прочитать график функции

Построение графиков функций

Что значит построить и прочитать график функции

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида Что значит построить и прочитать график функцииобласть определения выглядит так

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Что значит построить и прочитать график функции

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Что значит построить и прочитать график функции

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Что значит построить и прочитать график функции

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Что значит построить и прочитать график функции

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции Что значит построить и прочитать график функции

Упростим формулу функции:

Задача 2. Построим график функцииЧто значит построить и прочитать график функции

Выделим в формуле функции целую часть:

Что значит построить и прочитать график функции

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины Что значит построить и прочитать график функции, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины Что значит построить и прочитать график функции, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Что значит построить и прочитать график функции

xy
02
11

Что значит построить и прочитать график функции

xy
00
12

Что значит построить и прочитать график функции

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Что значит построить и прочитать график функции

Задача 5. Построить график функции Что значит построить и прочитать график функции

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Что значит построить и прочитать график функции

Задача 6. Построить графики функций:

б) Что значит построить и прочитать график функции

г) Что значит построить и прочитать график функции

д) Что значит построить и прочитать график функции

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) Что значит построить и прочитать график функции

Преобразование в одно действие типа f(x) + a.

Что значит построить и прочитать график функции

Сдвигаем график вверх на 1:

Что значит построить и прочитать график функции

б)Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

Сдвигаем график вправо на 1:

Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

Сдвигаем график вправо на 1:

Что значит построить и прочитать график функции

Сдвигаем график вверх на 2:

Что значит построить и прочитать график функции

г) Что значит построить и прочитать график функции

Преобразование в одно действие типа Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

д) Что значит построить и прочитать график функции

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

Сжимаем график в два раза вдоль оси абсцисс:

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

Отражаем график симметрично относительно оси абсцисс:

Источник

Исследование функции и построение графика

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Что значит построить и прочитать график функции

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят график онлайн для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены «горбы» выпуклости, где не определены значения и т.п.

Алгоритм

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать.

Полный пример решения онлайн

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Что значит построить и прочитать график функции

3) Определим точки пересечения графика функции с осями координат.

Что значит построить и прочитать график функции

Что значит построить и прочитать график функции

4) Функция не является ни четной, ни нечетной, так как: Что значит построить и прочитать график функции

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Что значит построить и прочитать график функцииЧто значит построить и прочитать график функции

Что значит построить и прочитать график функции

Найдем значения функции в этих точках:
Что значит построить и прочитать график функцииЧто значит построить и прочитать график функции

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

Приравняем вторую производную к нулю:

Что значит построить и прочитать график функции

8) Исследуем поведение функции на бесконечности, то есть при Что значит построить и прочитать график функции.

Что значит построить и прочитать график функции

Так как пределы бесконечны, горизонтальных асимптот нет.

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

Что значит построить и прочитать график функции

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

Задача 2. Исследовать функцию и построить ее график.

Задача 3. Исследовать функцию с помощью производной и построить график.

Задача 4. Провести полное исследование функции и построить график.

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

Задача 7. Проведите исследование функции с построением графика.

Задача 13. Провести полное исследование и построить график функции.

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки, с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Что значит построить и прочитать график функции
Что значит построить и прочитать график функции

При этом сайт сам пометил важные точки на графике (см. серым): локальный экстремум, пересечение с осями.

Вы можете менять масштаб, цвета, вид линий; добавлять на график точки, линии, кривые, табличные данные и даже анимацию!

Посмотрите, какую красоту Desmos умеет рисовать (точнее, его пользователи):

Что значит построить и прочитать график функции

Сайт для построения графиков y(x).ru

y(x).ru
Это уже наш продукт, возможно, не такой красивый и интерактивный, но вполне подходящий для учебных целей. Можно строить онлайн несколько графиков одновременно, при этом выбирать и обычный, и параметрический вид, и даже задание в полярных координатах. Цвет и масштаб можно менять вручную. Вот так вводятся графики:

Что значит построить и прочитать график функции

И такой график получается в итоге:

Что значит построить и прочитать график функции

Другие сайты

Еще несколько сервисов, которые обладают меньшим удобством/функциональностью, но тоже достойны внимания:

Больше знаний: теория и практика

Еще немного ссылок для тех, кто хочет углубиться в тему. Первая ссылка на теоретический материал, где вы найдете и подробные примеры, и отсылки к предыдущим разделам теории (а исследовать функцию не зная пределов, производных, понятия непрерывности и т.п. нельзя) с не менее подробным объяснением. Все это сдобрено порцией юмора, отчего очень «съедобно» даже для полного чайника в математике: Исследование функций от Александра Емелина.

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos. Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos.

Решебник

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм «Математика. Функции и графики». Объяснения на пальцах в прямом смысле слова самых основ.

Источник

Урок «Изучение графика числовых функций»

Краткое описание документа:

Каждый старший школьник должен уметь читать графики числовых функций. Такие навыки начинают отрабатываться с момента знакомства с графиками в курсе математики. К 10 классу эти умения должны получить достаточно устойчивый уровень. Хотя с самим понятием чтения графиков, в более глубоком смысле, обучающиеся знакомятся именно в 10 классе. И в помощь учителю, который собирается объяснять материал по данной теме, разработан данный видеоурок.

Что значит построить и прочитать график функции

Здесь содержится полезная, полная и качественная информация, усвоение которой не затруднено ничем. Обучающиеся легко освоят материал по теме, так как он подобран в соответствии со рядом требований, в том числе по возрасту обучающихся.

Урок длится 5:32 минут. Практически столько же времени, если не отвлекаться на какие-то посторонние моменты, понадобится учителю, чтобы объяснить новый материал на уроке. Здесь же время строго регламентировано. Поэтому пока обучающиеся будут просматривать видеоурок, у них не будет времени отвлекаться, иначе они не поймут суть происходящего. Так с помощью данного урока можно сформировать у обучающихся такие качества, как внимательность, дисциплинированность и самостоятельность.

Автор урока обращает внимание слушателей на то, что чтение графиков числовых функций имеет широкое применение в нашей жизни. Особенно часто чтение графиков используется в экономике. При этом на экране изображен график некоторой функции.

Здесь же автор предлагает вспомнить, какая функция называется числовой. Пока обучающиеся начинают вспоминать, он напоминает им данное понятие. При этом объяснение сопровождается иллюстрацией. При этом, получается, что необходимо также вспомнить, что называется областью определения и областью значений функции. Автор напоминает и то, как выглядит уравнение функции в общем виде.

Чтобы обучающимся было проще понять принцип чтения графиков функций, необходимо вспомнить, что называется аргументом, то есть зависимой переменной, и независимой переменной. После этого предлагается рассмотреть некоторую произвольную функцию и построить ее график, подобрав пары чисел, которые являются координатами точек в системе координат. Когда график построен, вводится определение графика функции.

Далее автор говорит, что означает прочитать график функции. Получается, что для этого необходимо перечислить ее свойства, которые видны по графику. При этом перечисляются те свойства, которыми обладают все функции, и те, которыми обладают только некоторые функции.

Затем предлагается рассмотреть в качестве примеров, известные функции, которые были изучены в курсе алгебры ранее. Таких функций рассматривается две, последовательно. Сначала на экране изображается график функции, а затем подробно описывается каждое свойство, которым обладает функция. На каждом пункте автор останавливается и поясняет, что и как получается.

Что значит построить и прочитать график функции

На этом видеоурок завершается, но не заканчивается занятие в школе. Поэтому оставшееся время желательно посвятить закреплению материала, подобрав для этого необходимые задания.

Урок будет полезен как для учителей, так и для обучающихся.

Чтение графика числовой функции.

Чтение графиков функций имеет большое практическое значение. В частности, использование функциональных зависимостей и построение графиков широко применяется в экономике.

Для изучения сегодняшней темы нам необходимо вспомнить: какая функция называется числовой?

Числовой функцией называется правило, с помощью которого каждому элементу из множества икс большое мы ставим в соответствие единственный элемент из множества игрек большое.

Множество Х называется областью определения функции.

Множество У называется множеством значений функции.

Равенство игрек равен эф от икс называется уравнением функции.

А что называется графиком функции?

Если дана функция игрек равно эф от х, где икс принадлежит икс большому и возьмем все пары икс, игрек и поставим им в соответствие соответствующие точки координатной плоскости, то получим график функции. График функции – это графической изображение зависимости между множествами икс большое и игрек большое.

Что значит построить и прочитать график функции

1)область определения функции;

2)область значений функции;

3)нули функции – значения аргумента, при которых функция равна нулю;

4)промежутки знакопостоянства функции, т.е.промежутки,

где значения функции имеют один и тот же знак;

5)промежутки монотонности функции, т.е. промежутки, где функция возрастает или убывает;

6)наибольшееи наименьшее значения функции, т.е. самое большое и самое маленькое значение зависимого переменного;

Свойства, которые имеют не все функции:

9) четность, нечетность;

Прочитаем графики известных нам функций, например,игрек равен квадратный корень из икс.

1. Область определения функции —

луч от нуля до плюс бесконечности
2. Игрек равен нулю при икс равному нулю; игрек больше нуля при икс больше нуля.

3. Функция возрастает на всей области определения.

6.Функция непрерывна в заданной области определения.
7. Область значений функции — луч от нуля до плюс бесконечности
8.График обращен выпуклостью вверх.
у=кх+в

Что значит построить и прочитать график функции

Прочитаем график ограниченной функции, график которой изображен

1.Область определения функции – отрезок от минус трех до трех.

7.Функция ограничена и сверху и снизу.

8.На отрезке минус трех до нуля функция выпукла вниз, а

на отрезке нуля до трех выпукла вверх.

9.Непрерывна на всей области определения.

Сегодня, мы научились читать графики элементарных функций. На следующем уроке мы продолжим чтение графиков тригонометрических функций, показательной, логарифмической.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *