Что значит постоянное ускорение
Постоянное ускорение
Двумерное движение анализируется при помощи деления его на два движения: вдоль горизонтальной и вертикальной осей.
Задача обучения
Основные пункты
Термин
Метательное движение – перемещение объекта, брошенного или проецируемого в воздух, контролируемого лишь гравитацией. Объект именуют снарядом, а путь – траекторией. Движение падающих предметов – простой одномерный тип, лишенный горизонтального перемещения. В двумерном есть вертикальная и горизонтальная оси.
Бросание камня или пинок ногой создают метательную траекторию, обладающую вертикальной и горизонтальной составляющими
Не стоит забывать, что движения вдоль перпендикулярной оси выступают независимыми и могут анализироваться отдельно. Чтобы изучить двумерное движение, следует разделить на горизонтальное и вертикальное. В каждом нужно остановиться на скорости, ускорении и смещении.
Мы анализируем двумерное метательное движение, где объект двигается с постоянным ускорением, разбивая его на горизонтальную и вертикальную оси. Горизонтальное отображается как ax = 0, a vx – постоянная. Скорость в вертикальном направлении постепенно уменьшается. В максимуме она равняется нулю. Когда объект снова упадет на поверхность, вертикальная начнет расти, но уже в противоположном направлении. Движения х и у могут быть рекомбинированы, чтобы отобразить полную скорость в любой указанной точке траектории.
Движение тела с постоянным ускорением
Всего получено оценок: 275.
Всего получено оценок: 275.
Одним из частых видов неравномерного движения является движение тела с постоянным ускорением. Рассмотрим особенности такого движения, выведем его кинематическую формулу.
Ускорение
Самым простым видом движения является равномерное и прямолинейное. Однако, большинство движений являются равномерными и прямолинейными лишь на некотором участке пути. Трение и взаимодействия с другими телами приводят к тому, что большая часть движений происходят с изменением скорости, то есть неравномерно. Покоящееся тело имеет нулевую скорость, потом начинает движение, и его скорость увеличивается, а после равномерного участка происходит замедление и остановка, скорость тела опять изменяется.
При этом, поскольку скорость – это векторная величина, то даже при постоянном модуле она может меняться, изменяя направление.
Изменение скорости может происходить с разной быстротой. Одна и та же скорость может быть достигнута с нулевой за различное время. Для оценки этой быстроты используется специальный параметр – ускорение.
Ускорение равно отношению изменения скорости движения ко времени этого изменения:
Ускорение – это векторная величина, если движение с ускорением происходит не по прямой, а на плоскости или в пространстве, ее направление и модуль находятся по правилам действий с векторами.
Из формулы ускорения следует, что единицей ускорения является метр в секунду за секунду или метр в секунду в квадрате.
Рис. 1. Ускорение в физике.
Скорость движения при постоянном ускорении
Движение с постоянным ускорением называется равноускоренным, независимо от того, увеличивает ли тело скорость или уменьшает. Хорошим примером равноускоренного движения является свободное падение тел в первые секунды, когда сопротивление воздуха не играет роли. Еще Галилей установил, что все тела при падении увеличивают скорость одинаково, то есть движутся с равным ускорением.
$$\overrightarrow v = \overrightarrow v_0 + \overrightarrow at$$
Это основная формула скорости при равноускоренном движении.
Рис. 2. Пример графика скорости равноускоренного движения.
Перемещение при равноускоренном движении
Из графика скорости можно определить перемещение, учитывая, что величина перемещения равна площади фигуры под графиком.
$$\overrightarrow x =\overrightarrow x_0+\overrightarrow v_0t+<\overrightarrow at^2\over 2>$$
Это основная формула перемещения при равноускоренном движении. Отметим, что она представляет собой уравнение второй степени, то есть график перемещения при равноускоренном движении будет параболой.
Рис. 3. Пример графика перемещения равноускоренного движения.
Обе приведенных формулы связывают скорость и перемещение материальной токи с моментом времени. Но, при решении задач иногда требуется, чтобы формула напрямую связывала скорость и перемещение. Выразив время из формулы скорости, и подставив его в формулу расстояния, получим:
Заметим, что данное соотношение имеет скалярный вид. Так происходит из-за присутствия действий умножения и деления, которые не применимы к векторным величинам, поэтому последнюю формулу можно использовать лишь только после проецирования векторов на оси координат.
Что мы узнали?
Ускорение – это величина, характеризующая быстроту изменения скорости движения. Если при движении ускорение не меняется, такое движение называется равноускоренным. График скорости при равноускоренном движении представляет собой наклонную прямую, график перемещения – параболу.
Ускорение
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
Рис. 1.8. Среднее ускорение.В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть
а направление вектора ускорения совпадает с вектором скорости
Если скорость тела по модулю уменьшается, то есть
то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а
Рис. 1.9. Мгновенное ускорение.
При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
(согласно теореме Пифагора для прямоугольно прямоугольника).
Направление полного ускорения также определяется правилом сложения векторов:
§ 1.16. Движение с постоянным ускорением
Простой случай неравномерного движения — это движение с постоянным ускорением, при котором модуль и направление ускорения не меняются со временем. Оно может быть прямолинейным и криволинейным. Приблизительно с постоянным ускорением движется автобус или поезд при отправлении в путь или при торможении, скользящая по льду шайба и т. д. Все тела под влиянием притяжения к Земле падают вблизи ее поверхности с постоянным ускорением, если сопротивлением воздуха можно пренебречь. Об этом пойдет речь в дальнейшем. Мы будем изучать в основном именно движение с постоянным ускорением.
При движении с постоянным ускорением вектор скорости за любые равные интервалы времени изменяется одинаково. Если уменьшить интервал времени в два раза, то и модуль вектора изменения скорости также уменьшится в два раза. Ведь за первую половину интервала скорость изменяется точно так же, как и за вторую. При этом направление вектора изменения скорости остается неизменным. Отношение изменения скорости к интервалу времени будет одним и тем же для любого промежутка времени. Поэтому выражение для ускорения можно записать так:
Поясним сказанное рисунком. Пусть траектория криволинейна, ускорение постоянно и направлено вниз. Тогда и векторы изменения скорости за равные интервалы времени, например за каждую секунду, будут направлены вниз. Найдем изменения скорости за последовательные интервалы времени, равные 1 с. Для этого отложим из одной точки А скорости 0, 1, 2, 3 и т. д., которые приобретает тело через 1 с, и произведем вычитания начальной скорости из конечной. Так как = const, то все векторы приращения скорости за каждую секунду лежат на одной вертикали и имеют одинаковые модули (рис 1.48), т. е. модуль вектора изменения скорости A возрастает равномерно.
Если ускорение постоянно, то его можно понимать как изменение скорости в единицу времени. Это позволяет установить единицы для модуля ускорения и его проекций. Запишем выражение для модуля ускорения:
Отсюда следует, что
Следовательно, за единицу ускорения принимается постоянное ускорение движения тела (точки), при котором за единицу времени модуль скорости изменяется на единицу скорости:
Эти единицы ускорения читаются так: один метр на секунду в квадрате и один сантиметр на секунду в квадрате.
Единица ускорения 1 м/с 2 — это такое постоянное ускорение, при котором модуль изменения скорости за каждую секунду равен 1 м/с.
Из всевозможных видов неравномерного движения мы выделили наиболее простое — движение с постоянным ускорением. Однако не существует движения со строго постоянным ускорением, как и не существует движения со строго постоянной скоростью. Все это простейшие модели реальных движений.
Ускорение при равноускоренном прямолинейном движении
теория по физике 🧲 кинематика
Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:
v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость
Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.
Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.
Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:
Проекция ускорения
vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость
Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:
При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.
Направление вектора ускорения
Направление вектора ускорения не всегда совпадает с направлением вектора скорости!
Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).
Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).
Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.
График ускорения
График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.
Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:
Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.
Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.
Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.
В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).
Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.
На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.
Алгоритм решения
Решение
График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:
Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.
График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.
График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.
Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.
График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».
График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Запишем исходные данные:
Формула, которая связывает ускорение тела с пройденным путем:
Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».
Выразим из формулы ускорение:
Подставим известные данные и вычислим ускорение автомобиля:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.
Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?
Алгоритм решения
Решение
Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.
Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:
Используем для вычислений следующую формулу:
Подставим в нее известные данные и сделаем вычисления:
Этому значению соответствует график «г».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Записываем формулу ускорения:
По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:
Выбираем любые 2 точки графика. Пусть это будут:
Подставляем данные формулу и вычисляем модуль ускорения:
pазбирался: Алиса Никитина | обсудить разбор | оценить