Что значит плоский штопор самолета
Плоский штопор
Што́пор в авиации — особый, критический режим полёта самолёта (планёра), заключающийся в его снижении по крутой нисходящей спирали малого радиуса с одновременным вращением относительно всех трёх его осей. При этом самолёт переходит на режим самовращения (авторотации).
Содержание
Классификация штопора
Штопор подразделяется по виду:
по углу наклона продольной оси самолёта к горизонту:
Самолёт может войти в штопор произвольно из-за ошибки лётчика, допущенной при пилотировании, или может быть введён преднамеренно для ознакомления лётчика с особенностями поведения самолёта на штопоре и обучения технике ввода и вывода из штопора.
Предпосылкой к попаданию самолёта в штопор является выход на закритические углы атаки (аэродинамический подхват) и сваливание. Если происходит асимметричный срыв потока (например, вследствие скольжения или действия элеронов), то возникают моменты сил, придающие самолёту вращение вокруг осей. Если самолёт имеет хорошие противоштопорные характеристики, то вращение быстро затухает и происходит обычное сваливание, набор скорости и выход на нормальный режим полёта. В противном случае, самолёт попадает в режим устойчивого вращения, при котором асимметрия обтекания усугубляется и затягивает самолёт в установившийся штопор. В случае,если лётчик попытается потянуть штурвал или РУС на себя, велика вероятность перехода в плоский штопор, с большими углами атаки и угловыми скоростями вращения.Выход из этого режима весьма затруднён.
Опасность штопора
Эффективность управляющих плоскостей при штопоре падает, а быстрое вращение может привести к дезориентации пилота, что затрудняет выход из штопора. Существенное падение подъёмной силы приводит к быстрому снижению и потере высоты, что представляет значительную опасность, особенно на малых высотах полёта. Всё это требует от пилота умения избегать сваливания (если нет цели выполнить штопор преднамеренно), распознавать предвестники сваливания и штопора (тряска, сигнал АУАСП и т. п.) и, при возникновении штопора, выводить из него самолёт на безопасной высоте.
Штопор самолета является наиболее сложной фигурой пилотажа.
Выход из штопора
Существует несколько методов вывода самолёта из штопора, в зависимости от модели самолёта и от типа штопора. Общий принцип всех методов: остановить вращение, увеличить скорость, восстановить эффективность рулей, прекратить срыв потока на обеих консолях крыла, переведя аппарат в нормальный полёт со снижением и набором скорости.
В процессе лётных испытаний опытных самолётов, чьи штопорные характеристики ещё не известны, для обеспечения надёжного выхода из уже развившегося (устойчивого) штопора применяются противоштопорные парашюты или ракеты.
Уилфред Парк
Впервые случайный выход из штопора осуществил британский авиатор Уилфред Парк. В августе 1912 года из-за ошибки пилотирования его биплан Avro G вошел в левый штопор на высоте 700 футов. Пытаясь погасить сильную продольную перегрузку, Парк полностью отклонил руль направления вправо (то есть в сторону, противоположную направлению вращения аэроплана). Самолёт вышел из штопора на высоте всего 50 футов.
Константин Арцеулов
Разработка теории штопора
Проблемой штопора в 1918-19 занимался английский учёный Г. Глауерт. Теоретическое обоснование штопора впервые разработано советским учёным В. С. Пышновым в работе «Самовращение и штопор самолётов» (1927).
Дальнейшие экспериментальные работы по штопору выполнены А. Н. Журавченко. В исследование штопора большой вклад внесли ученые ЦАГИ, летчики-испытатели ЛИИ,а также инженеры различных ОКБ. В частности, большой вклад в исследование динамики штопора внес летчик-испытатель А.А.Щербаков.
Авиакатастрофы, произошедшие в результате сваливания самолёта в штопор
Примечания
На первых Ту-134 (ГА) в комплектации были парашюты, которые не только помогали сократить пробег, но были единственным средством вывода самолета из штопора (из-за центровки самолета он как правило был плоским или падал хвостом вниз).
Ссылки
Полезное
Смотреть что такое «Плоский штопор» в других словарях:
Штопор (авиация) — У этого термина существуют и другие значения, см. Штопор. Штопор в авиации особый, критический режим полёта самолёта (планёра), заключающийся в его снижении по крутой нисходящей спирали малого радиуса с одновременным вращением относительно… … Википедия
Штопор (пилотаж) — У этого термина существуют и другие значения, см. Штопор. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удале … Википедия
ШТОПОР ПЛОСКИЙ — т. е. штопор, когда ось фюзеляжа близка к горизонтальному положению; фигура высшего пилотажа. Выполняется следующим образом: дают сильно до отказа желаемую ногу и в то же время ручку немного в противоположную сторону; хвост самолета занесется и… … Морской словарь
Штопор самолёта — движение самолёта по вертикальной нисходящей спирали малого радиуса при больших углах атаки, возникающее после потери скорости полёта и сваливания. В режиме Ш. резко изменяются характеристики управляемости вплоть до полной её потери или появления … Энциклопедия техники
штопор — Рис. 1. Штопорная аэродинамическая труба Т‑105. штопор самолёта движение самолёта по вертикальной нисходящей спирали малого радиуса при больших углах атаки, возникающее после потери скорости полёта и сваливания. В режиме Ш. резко… … Энциклопедия «Авиация»
штопор — Рис. 1. Штопорная аэродинамическая труба Т‑105. штопор самолёта движение самолёта по вертикальной нисходящей спирали малого радиуса при больших углах атаки, возникающее после потери скорости полёта и сваливания. В режиме Ш. резко… … Энциклопедия «Авиация»
штопор — Рис. 1. Штопорная аэродинамическая труба Т‑105. штопор самолёта движение самолёта по вертикальной нисходящей спирали малого радиуса при больших углах атаки, возникающее после потери скорости полёта и сваливания. В режиме Ш. резко… … Энциклопедия «Авиация»
штопор — Рис. 1. Штопорная аэродинамическая труба Т‑105. штопор самолёта движение самолёта по вертикальной нисходящей спирали малого радиуса при больших углах атаки, возникающее после потери скорости полёта и сваливания. В режиме Ш. резко… … Энциклопедия «Авиация»
Штопор — (голл. stopper, от stop пробка) 1) свёрнутый в спираль стержень из толстой, обычно стальной проволоки (диаметром 10 20 мм); имеет на конце швартовочное кольцо. Ввинченный в грунт, дерево, лёд Ш. служит для швартовки самолётов, планёров,… … Большая советская энциклопедия
ШТОПОР — самолёта движение самолёта по крутой нисходящей спирали малого радиуса на закритич. атаки углах с одноврем. вращением вокруг всех трёх осей, сопровождающееся частичной или полной потерей управляемости. Различают Ш.: неустойчивый (угловые скорости … Большой энциклопедический политехнический словарь
Плоский штопор
Плоский штопор отличается малыми углами тангажа, устойчивым (без значительных колебаний угловых скоростей и вертикальных перегрузок) и более энергичным вращением, постоянством приборной скорости, меньшей потерей высоты за один виток, большим запаздыванием на выводе и имеет следующие характеристики:
— потеря высоты за один виток. 40-60 м;
— время одного витка. 2,0-2,5 с;
— угол тангажа (по абсолютной величине). 20-30°;
— приборная скорость. не более 150 км/ч.
Самолет может попасть в непреднамеренный плоский штопор при следующих ошибках в технике пилотирования:
— отклонение элеронов против вращения (ручка управления отклонена в сторону, противоположную данной педали) в момент ввода в штопор или в процессе его выполнения;
— увеличение режима работы двигателя при выполнении штопора;
— отклонение элеронов против вращения и руля высоты на кабрирование (ручка Отклонена на себя и в сторону, противоположную данной педали) в процессе выполнения поворота на вертикали.
Непреднамеренное попадание самолета в плоский перевернутый штопор практически невозможно.
Плоский штопор в учебных целях разрешается выполнять не более трех витков с высоты не менее 1500 м.
Ввод самолета в плоский штопор рекомендуется выполнять с поворота на вертикали. При этом на установившейся вертикали на скорости 90 км/ч при левом повороте и 70 км/ч при правом повороте энергичным, но не резким движением педали ввести самолет в поворот.
В процессе поворота, не доходя до вертикали вниз 40-30°, взять ручку управления полностью на себя и затем отклонить ее в сторону, противоположную данной педали.
В процессе штопора рули и элероны удерживать в том положении, в котором они были даны на ввод.
Ввод самолета в правый плоский штопор выполняется легче, чем в левый. Правый штопор более устойчивый и энергичный. Самолет легче входит в штопор при составе экипажа из двух человек.
Для вывода самолета из плоского штопора необходимо:
уменьшить наддув двигателя до минимального (если двигатель работал на повышенных режимах);
энергично и полностью отклонить педаль против вращения;
отдать ручку управления от себя и в сторону по вращению самолета (в сторону, противоположную данной педали);
после прекращения вращения немедленно поставить педали и элероны в нейтральное положение, набрать скорость 160-170 км/ч и, плавно выбирая ручку управления на себя, вывести самолет из пикирования.
При подходе самолета к линии горизонта увеличить наддув двигателя и вывести самолет в горизонтальный полет.
Предупреждение.
Отклонение элеронов против вращения или увеличение режима работы двигателя (неуборка на МГ) могут привести к невыходу самолета из плоского штопора.
Штопор самолета
ШТОПОР САМОЛЕТА
Штопором самолета называется неуправляемое движение самолета по спиральной траектории малого радиуса на закритических углах атаки.
В штопор может войти любой самолет, как по желанию летчика, так и самопроизвольно при ошибках летчика в технике пилотирования. Так как штопор представляет собой неуправляемое движение, то выход и управляемый полет требует твердых навыков, хороших знаний и понимания его физической сущности. Штопор выполняется на самолетах Як-52 и Як-55 как с учебной целью, для тренировки летного состава, а также как фигура спортивного пилотажа.
Существуют два вида штопора: нормальный (прямой) и обратный (перевернутый) (Рис. 1).
По режиму установившегося вращения штопор подразделяется на крутой (наклон фюзеляжа к горизонту составляет 50. 70°) и плоский (наклон фюзеляжа составляет около 20. 300).
Потеря высоты на крутом штопоре в среднем составляет 100. 150 м за один виток. На плоском штопоре потеря высоты значительно меньше и составляет 50. 80 м.
СРЫВ В ШТОПОР НА МАЛОЙ ВЫСОТЕ
Поэтому когда угол атаки достаточно увеличился, подъемная сила становится меньше веса самолета и он начнет «проваливаться», опуская капот. Если летчик попытается еще увеличить угол атаки, то самолет станет «проваливаться» плашмя, т. е. парашютировать. Однако при парашютировании самолет трудно удерживать от кренов. А так как эффективность элеронов на больших углах атаки сильно ослаблена, то сохранить поперечное равновесие обычно не удается, и самолет сваливается на крыло, стремясь перейти в штопор.
Таким образом, происходит так называемая потеря скорости, которая приводит к ухудшению поперечной управляемости. Если бы летчик мог длительное время удерживать самолет в состоянии парашютирования, то в любой момент можно было бы, отклонив ручку управления от себя, уменьшить углы атаки, набрать скорость и перевести самолет в нормальный полет. Иногда это возможно, если потеря скорости не полная. В этом случае самолет упадет на нос, быстро наберет скорость и снова станет управляемым. Также при потере скорости и падении на крыло (Рис. 3, а) возможен вывод самолета на нос. В противном случае вслед за сваливанием на крыло следует штопор, для выхода из которого и из последующего пикирования требуется значительная высота.
— на малых высотах (примерно 600 м) необходимо всегда иметь достаточный запас скорости, т. е. выдерживать скорость не менее наивыгоднейшей;
— если допущена ошибка, скорость упала на значительную величину, управление, особенно по элеронам, стало несколько вялым, следует незначительно отклонить ручку управления от себя и в то же время удерживать самолет в поперечном равновесии элеронами и рулем направления;
— в случае внезапного отказа двигателя, особенно на взлете немедленно отклонить ручку управления от себя, и если скорость сильно упала, не начинать разворота до тех пор, пока самолет не наберет скорость до необходимой величины (не менее наивыгоднейшей) и не перейдет в нормальное планирование.
САМОВРАЩЕНИЕ КРЫЛА НА БОЛЬШИХ УГЛАХ АТАКИ. ПРЯМОЙ ШТОПОР
При потере скорости и накренении самолета происходит увеличение углов атаки у опускающегося полукрыла и уменьшение их у поднимающегося полукрыла (Рис. 4). Если полет происходит на малых или средних углах атаки, то указанное изменение углов атаки создает торможение (демпфирование) крена (Рис. 6).
На критических или закритических углах атаки случайное накренение самолета (вращение вокруг продольной оси) не только не тормозится, а, наоборот, еще больше усиливается, так как увеличение углов атаки сверх критического у опускающегося полукрыла сопровождается усилением срыва потока и падением коэффициента СуОП; у поднимающегося полукрыла, у которого углы атаки уменьшаются , коэффициент подъемной силы СуПОД уменьшается в меньшей степени или даже может возрасти (Рис. 5). В результате этого подъемная сила опускающегося полукрыла, имеющего большие углы атаки, оказывается меньшей, чем у поднимающегося полукрыла, вследствие чего на самолет будет действовать момент самовращения Мх (см. Рис. 4), направленный в сторону первоначального накренения самолета Это явление-самовращение, или авторотация, лежит в основе штопора самолета.
Рис. 4 К объяснению самовращения крыла
Рис. 5 К объяснению самовращения крыла
Рис. 6 К объяснению демпфирования крыла
Рис. 7 Соотношение подъемных сил опускающегося и поднимающегося полукрыльев при установившемся самовращении
Под действием указанного неуравновешенного момента самовращения крыло будет вращаться вокруг продольной оси с положительным угловым ускорением. По мере ускорения вращения поднимающееся полукрыло начинает работать с углами атаки, значительно меньшими критического, т. е. в условиях плавного обтекания, в то время как опускающееся полукрыло уже работает в условиях полного срыва воздушного потока.
Но угловая скорость накренения не будет возрастать безгранично. При некоторой угловой скорости вращения наступает равенство СуОП = СуПОД (Рис. 7), моменты нормальных сил обеих полукрыльев выравниваются, угловое ускорение исчезает и устанавливается постоянная угловая скорость самовращения (авторотации).
Величина угловой скорости самовращения крыла самолета зависит от величины исходного угла атаки (перед срывом в штопор).
ПЕРЕВЕРНУТЫЙ ШТОПОР
Перевернутый (обратный) штопор может быть получен как преднамеренно, так и непроизвольно из-за грубых ошибок летчика в технике пилотирования. Вращение самолета в перевернутом штопоре происходит в области отрицательных закритических углов атаки.
Обратный штопор может выполняться как с прямого, так и с обратного полета. Перед вводом скорость полета уменьшается до минимальной, углы атаки при этом становятся околокритическими или критическими. Достигнув критических углов атаки, летчик создает скольжение на одно из полукрыльев, и самолет входит в режим авторотации.
В этом случае отрицательный угол атаки и Су по величине меньше, чем в прямом полете (для самолета Як-52). Так как максимальный коэффициент подъемной силы имеет отрицательную величину , при котором образуется срыв потока и начинается авторотация, и в обратном полете его значение меньше, чем в прямом, то безопасная скорость (минимальная), при которой происходит срыв в перевернутый штопор, будет больше, чем в прямом полете, на 20. 30 км/ч. Для самолета Як-52 скорость срыва в перевернутый штопор составляет 140 км/ч. В перевернутом штопоре вращение самолета происходит таким образом, что кабина самолета находится на внешней стороне, поэтому летчик не прижимается к сиденью, как в обычном штопоре, а, наоборот, отделяется от сиденья и висит на привязных ремнях.
Непроизвольный срыв в обратный штопор может быть при выполнении обратного пилотажа.
Характер вращения самолета Як-52 при перевернутом штопоре более равномерный, чем при выполнении прямого штопорa. Выход самолета из перевернутого штопора более прост и надежен, чем из прямого. Это объясняется тем, что значения СуМАКС крыла самолета Як-52 на отрицательных углах атаки, при которых происходит перевернутый штопор, будут меньше, чем при обычном (прямом) штопоре, вследствие чего и склонность к авторотации крыла будет менее резко выражена.
При попадании в непреднамеренный перевернутый штопор летчик должен в первую очередь убедиться, что это действительно перевернутый штопор, и уточнить направление вращения. Только после этого должен приступить к выводу самолета из перевернутого штопора.
ПЛОСКИЙ ШТОПОР
Самолет переходит из нормального (прямого) штопора в плоский при следующих ошибках в технике пилотирования:
отклонение ручки управления против вращения в момент ввода самолета в нормальный (прямой) штопор или в процессе выполнения;
полное отклонение педали и ручки управления по диагонали на себя и в противоположную сторону данной педали в процессе выполнения поворота на вертикали;
увеличение оборотов двигателя в процессе выполнения прямого штопора.
С горизонтального полета самолет входит в плоский штопор стандартным способом как в прямой штопор, но при этом элероны отклоняются на вводе против вращения.
С поворота на вертикали самолет попадает в плоский штопор, не доходя 40. 30° до вертикали вниз за счет резкого отклонения ручки управления на себя и отклонения элеронов против вращения (педаль полностью отклонена в сторону поворота на вертикали).
Нормальный плоский штопор носит устойчивый характер, угловые скорости в процессе штопора знак не меняют и нет приостановки вращения.
Скорость в процессе выполнения плоского штопора не растет и колеблется в пределах 100. 150 км/ч.
Характеристики штопора от количества витков вращения практически не зависят, однако с ростом количества витков в штопоре увеличивается запаздывание и потеря высоты на выводе.
На самолетах Як-52 и Як-55 правый плоский штопор более устойчивый, чем левый.
Положение элеронов при выполнении плоского штопора влияет на его характеристики. Постановка элеронов в нейтральное положение при установившемся плоском штопоре на его характеристики не влияет. При этом вращение остается равномерным, а угловая скорость несколько уменьшается.
Постановка элеронов по вращению способствует переходу в крутой штопор и затем в крутую спираль. При этом угловая скорость интенсивно уменьшается , приборная скорость увеличивается, а вращение становится неравномерным.
Увеличение оборотов при выполнении плоского штопора приводит к уменьшению угла тангажа на 5. 10°. Угловая скорость вращения увеличивается, приборная скорость возрастает с 100 км/ч до 140. 150 км/ч.
С увеличением количества витков штопора запаздывание на выводе растет.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ШТОПОР САМОЛЕТА
Отклонение элеронов. Характеристики штопора сильно зависят от скольжения. Отклонение элеронов при штопоре влияет на скольжение. Опущенный элерон увеличивает аэродинамическое сопротивление полукрыла, создавая тем самым разворачивающий момент, который создает скольжение на противоположное полукрыло.
Если, например, при выполнении левого штопора отклонить ручку управления вправо (против штопора), то возникает скольжение на правое полукрыло. Поэтому, как правило, отклонение элеронов против штопора не способствует выходу самолета из штопора, а наоборот, усиливает вращение.
Скольжение самолета также может создаваться и отклонением педали.
ВЛИЯНИЕ ИЗМЕНЕНИЯ, УГЛОВ АТАКИ И СКОЛЬЖЕНИЯ НА ХАРАКТЕРИСТИКИ ШТОПОРА.
В процессе штопора самолет вращается не только вокруг продольной оси самолета X, но вокруг вертикальной оси Y, в сторону накренения. Вращение самолета на штопоре вокруг оси Y вызывается тем, что лобовое сопротивление у опускающегося полукрыла, работающего на закритических углах атаки в условиях срыва потока, больше, чем у поднимающегося полукрыла, работающего в условиях плавного обтекания на докритических углах атаки.
Таким образом, самовращение крыла вокруг продольной оси самолета на закритических углах атаки сопровождается появлением спирального путевого момента My, который, разворачивая самолет в сторону накренения, вводит его в спиральное движение. Капот самолета при этом обращен вовнутрь спиральной траектории.
Рис. 8 Параболический участок штопора
Ось спирали, по которой движется самолет (его центр тяжести), на первых витках штопора близка к параболе (Рис. 8). Это объясняется тем, что в процессе вращения самолета подъемная сила в среднем за виток нейтрализуется (подъемная сила в равное время направлена как вверх, так и вниз) и самолет в среднем движется под действием силы тяжести как тело, вращающееся горизонтально.
Для параболического участка траектории, когда ось штопора близка к горизонтали, характерны периодические изменения углов атаки и скольжения, вызывающие неравномерность, а иногда и неустойчивость штопора. На этом этапе штопора (по мере накренения в процессе сваливания на крыло) вертикальная составляющая подъемной силы уменьшается, вследствие чего у самолета возникает скольжение на опущенное полукрыло, т. е. внутреннее, или, во всяком случае, уменьшается внешнее скольжение, которое было создано при сваливании, и вращение самолета замедляется. Когда самолет повернется на 180°, то при дальнейшем вращении внизу уже окажется внешнее полукрыло и начнет развиваться (или усиливаться) внешнее скольжение, которое ускоряет вращение. В итоге вращение оказывается неравномерным.
У самолета Як-52, очень чувствительного к скольжению, появляющееся внутреннее скольжение может не только замедлить вращение, но и изменить его направление. Это возможно в том случае, когда вход в штопор был недостаточно энергичным, с малой угловой скоростью. Такой штопор называется неустойчивым.
РАЗНОС МАСС
Неравномерность вращения самолета вокруг наклонной оси штопора вызывает непрерывные изменения угла наклона продольной оси самолета к горизонту: капот самолета периодически то поднимается, то опускается вниз. При вращении самолета массы, разнесенные вдоль оси фюзеляжа, создают центробежный кабрирующий момент, который стремится поднять капот самолета и увеличить угол атаки. Пикирующий момент полной аэродинамической силы самолета стремится опустить капот и уменьшить угол атаки (Рис. 9). В момент замедления вращения пикирующий момент от аэродинамических сил Мпик становится большим, чем кабрирующий момент от центробежных сил капота и хвоста самолета Мкаб, вследствие чего само лет опускает капот. Опускание капота сопровождается увеличением угловой скорости вращения и нарастанием Мкаб от центробежных сил. Когда Мкаб станет больше, чем Мпик, опускание капота прекращается и далее он поднимается.
По мере приближения оси штопора к вертикали неравномерность вращения самолета постепенно уменьшается и продольная ось самолета составляет более постоянный угол с горизонтом.
Рис. 9 Схема сил, действующих на самолет при выполнении штопора. Влияние инерционных сил разнесенных грузов
Рис. 10 Аэродинамическое затенение рулей при штопоре
ВЛИЯНИЕ ЦЕНТРОВКИ САМОЛЕТА.
На переход самолета в штопор и на вывод его значительное влияние оказывает центровка.
Самолет Як-52 при полете одного летчика в передней кабине имеет значительную переднюю центровку (17,7 %), следовательно, крыло на больших углах атаки создает большой пикирующий момент, т. е. тенденцию перехода в пикирование и уменьшения угла атаки. Вследствие этого самолет труднее переходит из нормального (прямого) штопора в плоский и легко выходит из штопора. При перемещении центра тяжести назад картина ухудшается, особенно при очень задних центровках. Это объясняется тем, что момент крыла на больших углах атаки из пикирующего становится кабрирующим, т. е. самолет стремится увеличить угол атаки (примерно начиная с центровки 30 % САХ). Из вышесказанного следует вывод, что при задней центровке самолет будет хуже выходить из штопора (с запаздыванием), а при задней центровке может совсем не выйти.
Эффективность рулей управления при выводе самолета из штопора может быть достигнута путем рационального взаимного размещения вертикального и горизонтального оперения на фюзеляже и выбором формы в плане.
Влияние силовой установки на штопор. Изменение режима работы двигателя (силовой установки) в значительной мере влияет на характер штопора. Особенно влияние сказывается на самолете Як-52, имеющего децентрацию тяги силовой установки. Вывод самолета из штопора облегчается путем увеличения оборотов двигателя, так как сила тяги создает пикирующий момент, который также увеличивается за счет момента от действия струи воздушного винта на горизонтальное оперение, т. е. увеличение оборотов двигателя создает у самолета стремление уменьшить угол атаки, что облегчает вывод самолета из штопора.
Основание действия рулями управления на выводе из штопора. Основной причиной штопора является самовращение крыла на закритических углах атаки, поэтому для вывода самолета из штопора необходимо уменьшить угол атаки до величины, меньшей aкр, при котором самовращение невозможно.
Это достигается отклонением ручки управления от себя. Но вывод из штопора только отклонением ручки управления от себя практически невозможен, так как момент от руля высоты недостаточен для преодоления центробежного кабрирующего момента. Поэтому необходимо предварительно отклонением руля направления против штопора создать внутреннее скольжение, тем самым уменьшая величину центробежного кабрирующего момента. При выводе из плоского штопора отклонением ручки управления (по элеронам) в сторону вращения устраняется скольжение на внешнее полукрыло, которое возникает в результате действия момента, создаваемого разностью лобовых сопротивлений левого и правого полукрыльев.
Рис. 11 Поле зрения и направление взгляда летчика при правом штопоре