Что значит передавать тепло
Теплопередача
Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики
Виды теплообмена
Всего существует три простых (элементарных) вида передачи тепла:
Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них:
См. также
Литература
Полезное
Смотреть что такое «Теплопередача» в других словарях:
теплопередача — теплопередача … Орфографический словарь-справочник
ТЕПЛОПЕРЕДАЧА — теплообмен между двумя теплоносителями через разделяющую их тв. стенку или через поверхность раздела между ними. Т. включает в себя теплоотдачу от более горячей жидкости или газа к стенке, теплопроводность в стенке, теплоотдачу от стенки к более… … Физическая энциклопедия
Теплопередача — – перенос теплоты через ограждающую конструкцию от среды с более высокой температурой к среде с более низкой температурой. [ГОСТ 26602.1 99] Теплопередача – теплообмен между теплоносителем и бетоном через разделяющую их твердую стенку … Энциклопедия терминов, определений и пояснений строительных материалов
ТЕПЛОПЕРЕДАЧА — теплообмен между двумя теплоносителями или иными средами через разделяющую их твердую стенку или через поверхность раздела между ними. Интенсивность теплопередачи характеризуется коэффициентом теплопередачи, равным плотности теплового потока на… … Большой Энциклопедический словарь
ТЕПЛОПЕРЕДАЧА — ТЕПЛОПЕРЕДАЧА, теплопередачи, мн. нет, жен. (физ.). Передача теплоты от одного тела к другому. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ТЕПЛОПЕРЕДАЧА — совокупность явлений, при к рых имеет место перенос тепла из одной части пространства в другую. Перенос может происходить различными способами: теплопроводностью, конвекцией и лучеиспусканием. Теплопроводность явление непосредственной передачи… … Технический железнодорожный словарь
теплопередача — сущ., кол во синонимов: 2 • передача (85) • теплообмен (4) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
теплопередача — Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики термодинамикахолодильная техника EN heat … Справочник технического переводчика
теплопередача — 3.20 теплопередача: Теплообмен между двумя средами через разделяющую их жалюзи роллету. Источник: ГОСТ Р 52502 2012: Жалюзи роллеты металлические. Технические условия оригинал документа … Словарь-справочник терминов нормативно-технической документации
Теплопередача — Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними. Т. включает в себя теплоотдачу (См. Теплоотдача) от более горячей жидкости к стенке, Теплопроводность в стенке,… … Большая советская энциклопедия
Виды теплопередачи
Техника безопасности по теме «Тепловые явления»
Введение
В своей работе по теме «Виды теплопередачи» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8класс.
Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.
Выдвигаемая гипотеза: внутреннюю энергию тел можно изменять путем теплопередачи. Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.
Опыт № 1. Теплопроводность
На примере этого опыта я хотел показать действие теплопроводности наглядно. При нормальных условиях тепло должно передаваться равномерно вследствие колебательных движений частиц.
К металлической линейке с помощью воска я прикрепил несколько кнопок. Закрепив линейку в штативе, я начал нагревать один конец линейки с помощью спиртовки. Линейка начала постепенно нагреваться, это можно доказать тем, что воск начал таять постепенно и кнопки поочерёдно начали отпадать.
Вывод из опыта № 1
Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура в следующей части линейки. При теплопроводности не происходит переноса самого вещества. Теплопроводность металла хорошая, у жидкостей невелика, у газов еще меньше.
Применения теплопроводности
Теплопроводность в природе
У многих не перелётных птиц температура лапок и тела может различаться до 30 °С. Это связано с тем, что им приходится ходить по холодной земле или по снегу, чтобы не замёрзнуть, низкая температура лап сильно понижает теплоотдачу.
Образование ветра это тоже теплопроводность. Зарождаются ветра обычно около водоёмов. Днём суша нагревается быстрее чем вода, то есть над водой воздух более холодный, следовательно, его давление выше, чем у воздуха, который над сушей, и ветер начинает дуть в сторону суши. Ночью же суша остывает быстрее, чем над водой, и воздух над ней становится холоднее, чем тот, что над водой и ветер дует в сторону воды.
Мех животных обладает плохой теплопроводностью, что защищает их от перегрева и замерзания.
Снег, будучи плохим проводником тепла, предохраняет озимые посевы от вымерзания.
Внешняя температура тела у человека держится постоянной благодаря теплопроводности и её свойству, согласно которому, при взаимодействии микрочастиц они передают друг другу тепло.
Интересные факты о теплопроводности
Самую большую теплопроводность имеет алмаз. Его теплопроводность почти в 6 раз больше чем у меди. Если алмазную ложечку опустить в горячий чай, то вы сразу обожжётесь из-за того, что тепло дошло до конца ложки.
Теплопроводность стекла настолько мала, что вы можете взять стеклянную палочку, раскаленную посередине, за концы, и при этом даже не почувствовать тепла.
Итальянские учёные изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Лето в ней не буде жарко, а зимой – холодно. Это связано с тем, что она сшита из специального материала, не пропускающего тепло.
Опыт № 2. Излучение
В этом опыте я хотел показать способ передачи тепла без взаимодействия двух тел. Тепло должно передаваться приёмнику, а тот в свою очередь пускать его через трубку в жидкостный манометр. Вследствие нагрева воздуха в колене соединённом с жидкостным манометром, жидкость должна опуститься.
Я соединил колено жидкостного манометра с теплоприемником. Зажёг спиртовку и поднёс к ней теплоприёмник светлой стороной, но на определённое расстояние. Жидкость в колене манометра, соединённом с приёмником, немного уменьшилась. Выровняв количество жидкости в манометре, я снова поднёс теплоприемник к источнику тепла, но уже тёмной стороной. Жидкость в колене манометра, соединённом с приёмником, уменьшилась, но значительно сильнее и быстрее. Воздух в теплоприемнике нагрелся и расширился, стал давить на жидкость в колене манометра.
Вывод из опыта № 2
Энергия передавалась не теплопроводностью. Между нагретым телом и теплоприемником находился воздух – плохой проводник тепла. Следовательно, в данном случае передача энергии происходит путем излучения.
Передача тепла излучением отличается от других видов теплопередачи. Она может осуществляться даже в полном вакууме.
Важным и отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если поместить тело в теплоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии. Часть тепла полученного излучением поглощается, а часть отражается.
Применения излучения
Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных шаров, крылья самолетов красят в серебристой краской, чтобы они не нагревались солнцем.
Лучевой нагрев помещения специальными инфракрасными радиаторами. Такой нагрев более эффективный, чем нагрев конвекцией, так как лучи свободно проходят сквозь воздух.
Излучение используют на космических аппаратах. Так как там нет воздуха, не получится по-другому передать тепло.
Если находиться рядом с лампой накаливания можно почувствовать тепло исходящее от неё.
Солнечные батареи работают по принципу излучения. Солнце испускает мощные тепловые лучи. Солнечные батареи принимают тепловые лучи и перерабатывают их в энергию. Такие батареи хорошие приёмники для солнечных лучей, потому что их поверхность тёмного цвета, и они хорошо нагреваются. Такие батареи используются на космических станциях и спутниках.
От компьютеров и мобильных телефонов тоже исходит тепловые лучи.
Приборы ночного видения. Такие приборы сделаны из материалов способных превращать тепловые излучения в видимые. Такие приборы используются для съёмки в абсолютной темноте. Они способны улавливать различные участки, температура которых различается на сотые доли градуса.
Интересные факты
Чем более тёмное тело, тем лучше оно поглощает тепло. Зеркальные поверхности отражают тепло полученное излучением. Абсолютно черное тело – физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах.
Когда объект нагревается до высокой температуры, он начинает светиться красным цветом. В процессе дальнейшего нагревания объекта, цвет его излучения меняется, проходя через оранжевый, желтый, и дальше по спектру, чем горячее — тем меньше длина волны излучения.
Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.
Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву. Гремучие змеи и сибирские щитомордники реагируют на изменения температуры до тысячной доли градуса.
80 процентов тепла тела излучается головой человека.
Если бы не свойства излучения, то земля бы замёрзла. Так как земля постоянно излучает тепловые лучи в бесконечное пространство.
Глаза таракана чувствуют колебания температуры в сотую долю градуса.
На каждый квадратный метр земной поверхности попадает около 1 кВт тепловой энергии Солнца, что достаточно, чтобы вскипятить чайник за считанные минуты.
Опыт № 3. Конвекция
Рассмотрю явление передачи тепла с помощью конвекции. Этим опытом я хочу показать, как действует конвекция. Если опыт пройдёт успешно, то тепло должно передаваться снизу вверх.
Я налил холодную воду в колбу и добавил туда марганцовокислого калия для того, чтобы видно было процесс нагрева. Зажег спиртовку и начал подогревать колбу. Видно, как струи подкрашенной воды поднимаются вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются более тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, в свою очередь нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся вода равномерно прогревается.
Вывод из опыта № 3
При конвекции энергия переносится самими струями жидкости или газа. При конвекции происходит перенос вещества в пространстве. Для того чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу. Конвекция в твердых телах происходить не может.
Конвекция бывает двух видов: естественная – нагревание жидкости или газа и его самостоятельное движение; принудительная – смешивание жидкостей или газов с помощью насосов или вентиляторов.
Применение конвекции
Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции.
Конвекция используется в конвекционных печах или микроволновках. Суть работы конвекционных печей состоит в том, что благодаря вмонтированному в заднюю стенку нагревательному элементу и вентилятору, при включении происходит принудительная циркуляция горячего воздуха. Под воздействием этой циркуляции внутреннее пространство разогревается намного быстрее и равномернее, а, значит, и воздействие на продукты будет одновременным со всех сторон.
В холодильных устройствах также работает принцип конвекции, только в этом случае требуется заполнение внутренних отделений не теплым воздухом, а холодным.
Батареи отопления в жилых помещениях располагаются снизу, а не сверху, потому что тёплый воздух поднимается вверх и помещение прогревается везде одинаково, если бы батареи располагались у потолка, то помещение бы не нагревалось вовсе.
Батареи располагаются именно под окнами, потому что горячий воздух поднимается и распространяется по комнате, а сам уступает место холодному воздуху, поступающему из окна.
Конвекция используется в двигателях внутреннего сгорания. Если воздух не будет поступать в камеру сгорания, то горение прекратится. Из-за горения воздух там расширяется, давление уменьшается и холодный воздух поступает внутрь. К двигателю внутреннего сгорания обязательно должен поступать воздух.
Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло препятствует движению тёплого воздуха вверх, то есть осуществлению конвекции. Таким образом, теплица является ловушкой энергии.
Вентилятор фена прогоняет воздух через трубу с тонкой длинной нагревательной спиралью. Спираль нагревается проходящим по ней электрическим током. Далее происходит передача тепла от разогретой спирали окружающему её воздуху. Здесь используется явление принудительной вентиляции воздуха и явление теплопередачи.
Конвекция в природе
Конвекция участвует в образовании ветра. Если бы работала только теплопроводность, то ветров бы почти не было, но благодаря конвекции теплый воздух поднимается над сушей и уступая холодному воздуху.
Благодаря конвекции появляются облака и тучи. Так как вода испаряется, конвекция подгоняет пар высоко вверх, и там образуются облака под воздействием холодного воздуха и низкого давления.
Конвекция участвует в возникновении волн. Волны появляются благодаря ветру, а ветер в свою очередь благодаря конвекции и теплопередачи, следовательно, без конвекции волн не могло бы быть.
Стекло начинает замерзать снизу раньше, чем сверху. Это происходит потому, что холодный воздух более плотный и опускается вниз и тем самым замораживает поверхность стекла.
Листья осины дрожат даже в безветренную погоду. У листьев осины длинные, тонкие и сплющенные черенки, имеющие очень малую изгибную жесткость, поэтому листья осины чувствительны к любым, незначительным потокам воздуха. Даже в безветренную погоду, особенно в жару, над землей имеются вертикальные конвекционные потоки. Они и заставляют дрожать осину.
Интересные факты
В сильные морозы глубокие водоемы не промерзают до дна, и вода внизу имеет температуру +4 градуса Цельсия. Вода при такой температуре имеет наибольшую плотность и опускается на дно. Поэтому дальнейшая конвекция теплой воды наверх становится невозможной и вода более не остывает.
Выводы из проделанных опытов
Если изменение внутренней энергии происходит путем теплопередачи, то переход энергии от одних тел к другим осуществляется теплопроводностью, конвекцией или излучением. Когда температуры тел выравниваются, теплопередача прекращается.
Передача тепла или теплообмен это процесс распространения внутренней энергии в пространстве с разными температурами.
Теплопроводность это способность веществ и тел проводить энергию (тепло) от частей с высокой температурой к частям с более низкой. Такая способность существует за счет движения частиц. Энергия может передаваться между телами и внутри одного тела. Нагревая в пламени один конец гвоздя, мы рискуем обжечься о другой его конец, не находящийся в пламени.
В начале развития науки о свойствах тел и веществ считалось, что тепло передается путем перетекания «теплорода» между телами. Позже, с развитием физики, теплопроводность получила объяснение взаимодействием частиц вещества. Электроны в нагреваемом над огнем участке гвоздя движутся активнее и через столкновения отдают тепло медленным электронам в части, которая не подвергается нагреванию.
Виды теплообмена и способы передачи тепла
В физике выделяют несколько видов теплообмена:
Теплопроводность – свойство материалов передавать через свой объем поток тепла путем обмена энергией движения частиц.
Конвекция – перенос тепла, осуществляемый перемещением неравномерно прогретых участков среды (газа, жидкости) в пространстве.
Излучение – в данном случае перенос тепла в вакууме или газовой среде осуществляется электромагнитными волнами.
Рассмотрим сущность и назначение каждого из видов теплообмена.
Теплопроводность
В большинстве случаев виды теплообмена тесно связаны и проходят одновременно. Конвекция всегда дополняется теплопроводностью, так как при движении объема среды всегда имеется взаимодействие частиц с разными температурами. Такой процесс имеет название конвективного теплообмена.
Примером такого типа теплообмена является остывание горячего чая, налитого в холодную металлическую кружку. Отдача тепла может сопровождаться его излучением, тогда в переносе теплоты участвуют все три вида: теплопроводность, конвекция, тепловое излучение.
Рассмотрим более подробно теплопроводность.
Этот вид теплообмена присущ твердым телам, но присутствует так же в жидкостях и газах. В твердых телах теплопроводность является основным видом теплообмена и напрямую зависима от природы вещества, его плотности, химического состава, влажности, температуры.
Разные тела и вещества имеют разную теплопроводность. Количественным показателем теплопроводности служит коэффициент теплопроводности, он обозначается буквой λ (лямбда). Чем выше плотность, влажность и температура тела, тем больше λ.
Проведение тепла происходит за счет взаимодействий между частицами. Конечной целью процесса будет выравнивание внутренней температуры по всему телу. Теплопроводность жидкостей меньше, чем у твердых тел, у газов – меньше, чем у жидкостей. Причиной является большое расстояние между молекулами в жидкостях, особенно в газах.
Низкая теплопроводность воздуха издавна используется при изготовлении двойных оконных рам. Теплопроводность воздуха гораздо ниже теплопроводности стекла. Воздушная прослойка межу стеклами защищает от зимней стужи.
Плохая теплопроводность, появившаяся в процессе эволюции в качестве защиты от критических температур, у живых организмов. Шерсть, пух, волосы, жир обладают очень низкой теплопроводностью. Именно поэтому мы не мерзнем зимой в теплых носках, песцы могут спать на снегу, а моржи выживают в условиях Арктики за счет жировой прослойки.
В таблице приведены примеры материалов, веществ и сред с наименьшей и наибольшей теплопроводностью.
Исходя из данных, приведенных в таблице, можно сделать некоторые выводы:
В вакууме тепло не проводится. Передача тепла в вакууме может происходить с помощью излучения. Таким способом тепло Солнца доходит до нашей планеты.
Материал с наивысшей теплопроводностью называется графен, который активно используется в наноэлектронике.
Металлы тоже достаточно теплопроводные. Известно, как быстро нагревается металлическая ложка в горячем супе.
Строительные материалы обладают низкой теплопроводностью, что и обуславливает их использование для возведения теплых и надежных жилищ.
С понятием теплопроводности тесно связано понятие теплоемкости.
Теплоемкостью называют количество тепла, которое поглотило тело (вещество), чтобы его температура повысилась на 1 градус. Действительно, для повышения температуры металлического стержня на 1 градус, необходимо, чтобы он обладал теплопроводностью для равномерного нагревания всего объёма.
Знания о теплопроводности веществ и материалов необходимы в строительстве, промышленности, быту. Степень теплопроводности материала обуславливает его применение в той или иной сфере. Разработка и поиск новых веществ с уникальными теплоизоляционными свойствами – важнейшая задача современной науки.
Конвекция
При конвекции энергия передается потоками, возникающими в различных средах.
В зависимости от причины возникновения, процессы этого типа теплообмена делят на естественную и вынужденную конвекцию:
Естественная конвекция возникает под влиянием естественных сил: неравномерного прогрева, силы тяжести. Процессы естественной конвекции происходят на планете ежеминутно. Появление облаков, формирование атмосферных фронтов, циклонов и антициклонов в атмосфере возможно благодаря этому процессу. Воды мирового океана так же подвержены процессам конвекции, в результате образуются океанические течения. Движение тектонических плит так же обусловлено конвективными процессами.
Излучение
Излучение тепла является электромагнитным процессом. Тепло выделяют любые тела, температура которых выше 0 К.
Тепло излучается телами благодаря тому, что любое вещество состоит из молекул и атомов, а они, в свою очередь, из заряженных протонов и электронов. Таким образом, любое тело оказывается пронизанным электромагнитным полем.
Виды теплопередачи в физике
Описание процесса
Теплопередача представляет собой один из важнейших физических процессов, состоящий из нескольких простых превращений. Во время него теплота переносится от одного объекта к другому или внутри тела при наличии разности температур. Тепловая энергия присутствует в следующих средах:
Передача тепла — это самопроизвольный процесс, проходящий в свободном пространстве. Энергия распространяется от объектов, которые имеют высокую температуру, к телам с меньшим показателем. Исследования, проведённые учёными, говорят, что теплопередача слишком сложна для рассмотрения её в виде одного процесса. В связи с этим физическое явление было разделено на три следующие вида:
Характеристика теплопроводности
Теплопроводность — это передача энергии от объекта к объекту или от одной части некоего физического тела к другой посредством теплового движения молекул и атомов. Необходимо отметить, что при этом явлении вещество не перемещается, передаётся лишь внутренняя энергия. Наблюдать теплопроводность позволяет следующий опыт:
Это происходит из-за плавления воска, которое вызывает повышение температуры металла. Тот факт, что гвозди отпали не одновременно, свидетельствует о постепенном нагревании стержня. Следовательно, внутренняя энергия тела по мере своего увеличения передавалась от горячего конца к холодному.
Передача тепла имеет ещё одно объяснение, базирующееся на внутреннем строении вещества. Частицы нагреваемого конца стержня из-за внешнего воздействия увеличивают свою энергию. В результате их колебание становится более интенсивным, из-за чего часть полученного потенциала молекулы передают соседним частицам, которые тоже начинают колебаться быстрее. Процесс передачи энергии постепенно охватывает весь стержень. Результатом её увеличения становится повышение температуры объекта.
Теплопроводность различных веществ отличается, даже существуют специальные таблицы, содержащие информацию об этом качестве физических тел. К примеру, если на дно пробирки с водой опустить кусок льда, а её верхний конец нагреть, то вскоре вода, находящаяся рядом с источником огня, закипит, хотя лёд сохранит своё состояние. Из этого следует, что у воды плохая теплопроводность. Этим качеством отличаются все жидкости.
Газообразные вещества имеет ещё более низкую теплопроводность. Доказать утверждение можно опытным путём:
Если в пробирку опустить палец, то тепло ощущаться не будет. Эксперимент позволяет сделать вывод, что воздух, как и прочие газы, плохо передаёт внутреннюю энергию.
Наилучшими проводниками теплоты считаются металлические тела, а к наихудшим относятся сильно разреженные газы. Причиной этого является их молекулярное строение. Частицы газообразных веществ расположены на больших расстояниях друг от друга, а потому сталкиваются редко, из-за чего передача теплоты происходит значительно медленнее, чем в твёрдых телах. Жидкости по уровню теплопроводности находятся между газами и твёрдыми объектами.
Описание конвекции
Конвекция является ещё одним способом передачи теплоты. Её сущность заключается в переносе внутренней энергии слоями жидких или газообразных веществ.
Поскольку конвекция происходит только при перемещении веществ, осуществляться такой процесс может лишь в жидкостях и газах. Известно, что физические тела в этих двух состояниях плохо проводят тепло, но благодаря концекции их всё же можно нагреть. Эффективное применение этого процесса можно наблюдать в холодное время года, когда в помещениях, оборудованных батареями парового отопления, воздух согревается. Этот тип теплопередачи можно наблюдать при проведении простого опыта:
Нижний слой жидкости при нагреве расширяется, что приводит к увеличению её объёма и уменьшению плотности. Под воздействием архимедовой силы нагретая часть вещества перемещается выше. На освободившееся место опускается холодная жидкость, которая по мере нагревания поднимается. В этом случае внутренняя энергия передаётся движущимися вверх потоками воды.
Подобным образом происходит передача теплоты и в газах. Так, если бумажную вертушку размещают над источником тепла, то она начинает вращаться. Лопасти объекта приходят в движение потому, что наименее плотные слои нагретого воздуха поднимаются из-за воздействия на них выталкивающей силы, в то же время холодные слои опускаются, занимая место тёплых. Это передвижение воздуха заставляет вертушку вращаться.
Определение излучения
Последним видом теплопередачи является излучение. Его можно почувствовать, поднеся руку к включенной электрической лампочке, батарее отопления, спирали нагретой электроплиты, горячему утюгу и т. д. Опытным путём выявить излучение можно следующим образом:
Изменение уровня воды в манометре объясняется тем, что воздух, находящийся в теплоприёмнике, начинает расширяться. Но расширение газа возможно только при нагревании, значит, вещество получило от ёмкости с кипятком энергию. Известно, что у воздуха плохая теплопроводность, а конвекции в этой ситуации нет, поскольку сосуд расположен на одном уровне с теплоприёмником, следовательно, ёмкость излучает тепловую энергию.
Кроме того, опыт свидетельствует, что от тёмной стороны сосуда исходит больший потенциал, чем от белой. Это подтверждает разный уровень жидкости в манометре.
Чёрная поверхность не только отдаёт большое количество энергии, но и принимает её больше. Экспериментальным доказательством этого утверждения может служить включенная электрическая плита, к которой сначала подносят светлую сторону теплоприёмника с присоединённым к нему манометром, а затем тёмную. Во втором случае уровень жидкости в измерительном приборе будет ниже, чем в первом.
Приведённые опыты подтверждают тот факт, что чёрные тела поглощают и испускают энергию значительно лучше, чем белые. А светлые, в свою очередь, плохо излучают и поглощают её, но хорошо отражают. Именно поэтому в летнее время люди предпочитают светлую одежду, а дома, расположенные в тёплых странах, часто красят в белый цвет.
В природе основным примером теплопередачи в виде излучения можно считать энергию, передаваемую Земле Солнцем. Так как пространство между звездой и планетой заполнено космическим вакуумом, то энергетический потенциал не может быть передан ни посредством конвекции, ни путём теплопроводности. Это значит, что такой вид теплопередачи не зависит от какой-либо среды, излучение обладает способностью свободно проходить даже через вакуум.
Закон охлаждения Ньютона и коэффициенты
Чаще всего жидкости и газы нагреваются или охлаждаются, соприкасаясь с поверхностью различных твердых объектов. Такой процесс обмена теплом называют теплоотдачей, а поверхность, переносящая тепло, получила наименование «поверхность теплообмена» или «теплоотдающая».
Рассчитать скорость теплоотдачи можно с помощью эмпирического уравнения теплоотдачи, основанного на законе охлаждения Ньютона. Если процесс установился, то уравнение выглядит следующим образом: Q = α*F*(tж — tст)*τ, где:
При рассмотрении процесса теплопередачи в твёрдой стенке обязательным условием является разница между температурами поверхностей. Она образует тепловой поток, который направлен от плоскости с наиболее высокой температурой к поверхности с меньшим подобным показателем. Если процесс установился, то закон Фурье принимает вид: Q = λ*F*(t’ст — t»ст)/δ, где:
Зачастую для решения задач по физике необходимо сделать расчёт теплопередачи по формулам, подходящим для различных видов процесса. Такая разница объясняется разными физическими характеристиками веществ, а также особенностями методов передачи теплоты.