Что значит паяный радиатор охлаждения
Точка автозакипания: как выбрать автомобильный радиатор
Радиатор — это устройство для рассеивания в воздухе избыточного тепла — проще говоря, воздушный теплообменник, необходимый для поддержания определённого температурного режима. Радиатор охлаждения двигателя, к примеру, состоит из верхнего и нижнего бачков, а также рабочей части, в которой и происходит охлаждение жидкости. Жидкость, поступающая в радиатор из водяной рубашки двигателя, охлаждается в нём до приемлемой температуры, после чего возвращается в двигатель. Рабочая часть радиатора изготавливается из лёгких металлов, которые имеют хорошую теплопроводность и обеспечивают эффективное охлаждение жидкости.
Как устроен радиатор?
Рабочую часть составляют плоские металлические пластины либо согнутые в гармошку ленты, которые пронизывают полые трубки, соединяющие верхний и нижний бачки. Таким образом, жидкость проходит через рабочую часть множеством потоков, в результате чего увеличивается площадь и интенсивность охлаждения. Патрубки радиатора соединяют бачки непосредственно с водяной рубашкой двигателя, а жидкость в систему охлаждения заливается через горловину, расположенную на верхнем бачке радиатора, либо через расширительный бачок, соединенный с радиатором пароотводящим шлангом. Принцип работы жидкостной системы охлаждения заключается в следующем. Водяной насос обеспечивает систему непрерывной циркуляции жидкости, благодаря чему омываются стенки цилиндров и головки блока, отводя избыточное тепло.
Нагретая жидкость направляется по патрубкам в радиатор, в котором обеспечивается рассеивание тепла в окружающую среду. После этого охлаждённая жидкость возвращается в водяную рубашку охлаждения мотора и цикл повторяется. Как правило, чтобы повысить эффективность работы системы охлаждения, перед радиатором устанавливается вентилятор, который нагнетает воздух на его поверхность и ускоряет процесс теплообмена. Обычно вентилятор имеет электропривод, который запускается автоматически по сигналу датчика температуры охлаждающей жидкости.
Какие бывают радиаторы?
В конструкции автомобиля существует несколько типов радиаторов, отличающихся по назначению:
Кроме того, радиаторы отличаются и по типу конструкции. Существует три основных типа радиаторов:
Занимательная эволюция
Однако как современный автомобиль отличается от архаичной самобеглой коляски, так и нынешние радиаторы претерпели значительную эволюцию, чтобы превратиться в знакомую нам деталь. Mercedes 35 PS, разработанный в 1900 году, стал первым автомобилем с ячеистым радиатором, который Вильгельм Майбах запатентовал ещё в 1897 году. Его прямоугольная решётка, оснащённая 8070 ячейками с квадратным поперечным сечением 6х6 мм, увеличивала приток свежего воздуха и пропускала 9 литров воды. Кстати, 35 PS стал ещё и первым в истории «Мерседесом»: совладелец компании Daimler-Motoren-Gesellschaft Эмиль Еллинек позаимствовал для новой автомобильной марки имя. у собственной дочери. Наверное, история больше не знает случаев, когда отец не придумал имя своей дочке, а наоборот, «воспользовался» им в собственных интересах. Первые радиаторы появились вместе с первыми автомобилями ещё в конце XIX века. До тех пор, пока двигатели обладали небольшой мощностью, тепло при работе мотора рассеивалось в атмосферу непосредственно от двигателя, но растущая мощность заставила инженеров задуматься о более эффективном охлаждении.
Так появились первые радиаторы, которые, по сути, представляли собой змеевик из гнутой тонкостенной медной трубы, а на рубеже XX века его наделили рёбрами для лучшей работы. Но при дальнейшем увеличении мощности двигателей столь простые радиаторы стали неэффективны, в особенности из-за значительного гидравлического сопротивления. Поэтому в 1913 году появился первый образец пластинчатого паяного медно-латунного радиатора. Чуть позже изобрели конструкцию радиатора, в которой воздух проходил сквозь горизонтальные воздушные трубки внутри бачка.
От трубок к сотам
Количество этих трубок со временем увеличивалось и в итоге получился сотовый радиатор, который был широко распространён вплоть до середины 1930-х годов. Впрочем, были у такой конструкции и недостатки. Сотовые радиаторы довольно трудоёмки в производстве, обладают большими габаритами и массой. Непрерывный рост мощности двигателей и сокращение подкапотного пространства заставляли инженеров придумывать более сложные и компактные конструкции. К примеру, на радиаторах появляются латунные донья, в которые запаивают медные трубки, окружённые стальными пластинами.
Вследствие использования стальных пластин трубчато-пластинчатые радиаторы отличались весьма большим весом, слабым теплообменом, низкой вибрационной стойкостью и повышенной склонностью к коррозии. Как результат, вместо стальных пластин такие радиаторы получили медную ленту, что значительно повысило их теплоотдачу. К тому же, трубчато-пластинчатые медно-стальные радиаторы обладали меньшей массой, чем стальные.
Суровый советский алюминий
Сборные алюминиевые радиаторы стали разрабатывать в СССР во время «холодной войны». Медь являлась стратегическим продуктом и конструкторы заменили её алюминием, применяя как паяные, так и сборные конструкции. Первые попытки создания алюминиевых сборных радиаторов были предприняты на Ждановском радиаторном заводе, но оказались не вполне удачными, так как за основу была взята схема с плоскоовальными трубками, которые было тяжело уплотнять на торцах в месте соединения с доньями, из-за чего проект оказался непосильно сложным и дорогим. Вскоре его закрыли, а дальнейшим развитием конструкции стал радиатор из плоскоовальных трубок с закруглёнными концами, что позволило существенно улучшить качество уплотнения.
Тогда советский изобретатель М.С. Курневич решил, что в сборных радиаторах нужно делать трубку круглого сечения на всю длину, но, к сожалению, он ушёл из жизни прежде, чем успел сделать опытный образец. В 1970-х годах появились первые образцы паяных алюминиевых радиаторов, которые, однако, весьма неудовлетворительно справлялись с теплоотдачей, особенно в городском режиме, поэтому вскоре были заменены медно-латунными. Причиной слабой теплоотдачи являлось конструктивное исполнение алюминиевой ленты, шаг которой составлял около восьми миллиметров. Увы, сделать ячейки рабочей части ещё меньше не представлялось возможным из-за ограничений оборудования на производстве радиаторов.
Не такие, как все
Можно сказать, что эволюция автомобильных радиаторов заключалась в повышении их теплоотдачи при уменьшении габаритов и стоимости. Однако при этом история знает несколько довольно интересных экземпляров, которые по тем или иным причинам так и не стали серийными. Таким был, скажем, радиатор для тракторов, на котором крышки бачков фиксировались болтами, что обеспечивало отменную ремонтопригодность. Интересен и «безотходный» алюминиевый радиатор для грузовиков КамАЗ, в котором на охлаждающих трубках с помощью фрезы «ёлочкой» нарезалось оребрение.
Или паяный алюминиевый радиатор отопителя для автобусов ЛиАЗ, который отличался съёмными патрубками в целях унификации. Немецкая компания Porsche еще в 2004 году показала образец алюминиевого сборного радиатора охлаждения с плоскоовальными трубками, у которых площадь контакта воздуха на 30% больше, чем у круглых трубок. Соответственно выше и теплоотдача такого радиатора. И только в 2014 году такие радиаторы были освоены компанией LUZAR в России. Рекордсменом по количеству радиаторов является Bugatti Veyron. В процессе его разработки инженеры столкнулись с необходимостью обеспечить могучему восьмилитровому мотору W16 мощностью 1001 лошадиную силу достойное охлаждение. Ведь уникальный гиперкар должен был не только носиться со скоростью свыше 400 км/ч, но и толкаться в пробках. Получилось это лишь на шестом прототипе, когда количество радиаторов системы охлаждения выросло до. десяти. Для интереса посчитайте количество радиаторов у себя дома — у Bugatti их больше, не так ли? Ничего удивительного: Veyron с его стоимостью в два миллиона долларов стоит явно дороже вашей квартиры. Бывали даже комбинированные радиаторы охлаждения и отопления. При их создании использовались комбинации таких материалов, как медь, латунь, алюминий и сталь. В результате получался сборный радиатор с круглыми алюминиевыми охлаждающими трубками и медными пластинами — согласитесь, довольно экзотическая конструкция.
Автомобильные радиаторы
Радиатор: основа автомобильных систем охлаждения
Что такое радиатор?
Радиатор — узел систем охлаждения различных агрегатов транспортных средств (двигателя, масла, отопителя салона, кондиционера, интеркулера и других); воздушный или жидкостный теплообменник, состоящий из ряда тонких трубок и резервуаров, обеспечивающий охлаждение протекающей жидкости набегающим потоком воздуха или жидкости.
В транспортных средствах присутствует как минимум один агрегат, требующий отвода тепла в процессе работы — двигатель. Во многих автомобилях также есть отдельные механизмы и системы, для нормального функционирования которых необходимо организовать охлаждение — система смазки двигателя или коробки передач, система охлаждения наддувного воздуха (интеркулер), система кондиционирования и другие. Наконец, в любой машине есть система отопления салона, для работы которой необходимо отбирать часть тепла от двигателя и направлять его в салон. Во всех этих системах присутствует похожая по конструкции и работе деталь — радиатор или теплообменник.
На радиаторы возлагается несколько функций:
При этом любой радиатор обеспечивает теплообмен между различными средами (жидкостями, жидкостью и воздухом, газами), за счет чего достигается охлаждение одних сред и нагрев других. Все радиаторы важны для нормального функционирования отдельных систем автомобиля, в отдельных случаях радиатор в принципе делает возможной эксплуатацию транспортного средства. Поэтому неисправный теплообменник необходимо отремонтировать или заменить, но прежде, чем идти в магазин за новой деталью, необходимо разобраться в типах, конструкции и особенностях работы автомобильных радиаторов.
Типы и устройство автомобильных радиаторов
Все автомобильные радиаторы имеют принципиально одинаковую конструкцию, в которой можно выделить три части:
Сердцевина — это система труб и пластин, которая является теплообменником. Бачки служат для подвода и отвода рабочей среды из сердцевины, они могут располагаться сверху и снизу или по бокам от сердцевины. На некоторых типах радиаторов бачки как таковые отсутствуют.
Общее устройство автомобильного радиатора
По конструкции сердцевины радиаторы делятся на два типа:
В радиаторах с трубчатой сердцевиной теплообменник выполнен в виде системы труб круглого или овального сечения, которые для лучшей отдачи тепла окружены металлическими пластинами того или иного типа. В радиаторах с пластинчатой сердцевиной теплообменник выполнен в виде зигзагообразных трубок плоскоовального сечения, которые за счет большой площади поверхности не нуждаются в дополнительных металлических пластинах.
В свою очередь, трубчатые радиаторы делятся на две больших группы:
Сердцевина трубчато-пластинчатых радиаторов выполнена в виде системы трубок круглого или овального сечения, помещенных в пакет широких металлических пластин. Такой теплообменник имеет большую площадь поверхности, которая хорошо отдает тепло набегающему потоку воздуха и обеспечивает эффективное охлаждение протекающей по радиатору жидкости.
Сердцевина трубчато-ленточных радиаторов выполнена в виде системы трубок овального (плоскоовального) сечения, между которыми располагаются зигзагообразные (согнутые в гармошку) металлические ленты. Такая конструкция имеет увеличенную по сравнению с трубчато-пластинчатой площадь поверхности и, как следствие, более эффективную теплоотдачу.
По материалу изготовления радиаторы бывают двух основных типов:
В устройствах первого типа трубки и пластины/ленты выполнены из меди, которая обладает высокой теплопроводностью и поддается пайке. Однако медные радиаторы тяжелые и дорогие, поэтому в современных автомобилях они практически вытеснены радиаторами из алюминиевых сплавов. Бачки всех типов радиаторов могут выполняться из пластика, алюминия или латуни, на бачках обязательно присутствуют патрубки, резьбовые или байонетные горловины для установки пробки, штуцеры или краны для слива жидкости, гнезда для установки датчиков температуры и иные элементы.
При этом трубки сердцевины могут быть бесшовными или паяными/сварными, а сама конструкция сердцевины радиатора — сборной и паяной. Сборными чаще всего выполняются алюминиевые радиаторы с трубчато-пластинчатой сердцевиной — в этом случае трубки привариваются или припаиваются только к бачкам, а пластины и трубки соприкасаются друг с другом, однако никак не соединяются. Паяными и сварными выполняются алюминиевые и медные трубчато-ленточные радиаторы — в этом случае трубки и ленты спаяны друг с другом, что обеспечивает надежный контакт между деталями и жесткость всей конструкции.
Описанную конструкцию имеют все автомобильные радиаторы, отличаясь лишь некоторыми деталями, о которых сказано ниже.
Применяемость автомобильных радиаторов
Радиаторы отопителя салона
На автомобили могут устанавливаться радиаторы различного назначения:
Эти радиаторы могут иметь существенные отличия в конструкции. Например, радиаторы отопителя имеют малые габариты, а радиаторы кондиционера имеют несколько патрубков для подвода хладагента. Масляные радиаторы обычно выполнены в виде одной трубы, свернутой в спираль или согнутой в гармошку, вокруг которой располагается пакет пластин или лент (либо вовсе без пластин). А радиатор интеркулера имеет большое сечение труб и патрубков, что обеспечивает пропуск большого количества воздуха без существенного повышения сопротивления потоку.
Рис. 1. Автоматическая газопламенная пайка изделия из алюминия
В этой области пайка имеет несомненные преимущества, однако в России она часто не применяется, а в производстве вместо нее используется аргонно-дуговая сварка. Скорее всего, это объясняется недостатком информации о возможностях паяных соединений при конструировании
изделий и сложностью подбора технологии и материалов, а также доступностью последних на российском рынке. На отечественных заводах указанный вакуум знаний ощущается в полной мере. С другой стороны основная часть перечисленной продукции, например в области автомобилестроения, ввозится по импорту. Более 20 автомобильных заводов на территории России похоже даже и не рассматривают возможности производства паяных комплектующих в нашей стране. Какие же сплавы на основе алюминия можно соединять с помощью пайки? Сплавы серии 1ххх (99 %Al и выше), 2ххх (с добавкой меди), 3ххх (с добавкой магния), 4ххх (с добавкой кремния) и 7ххх (с добавкой цинка), несомненно, пригодны к пайке. Сплавы серии 5ххх (с добавкой магния) были не пригодны к пайке при содержании магния более 1 % и сплавы серии 6ххх (с добавкой кремния и магния) пригодны или не пригодны к пайке в зависимости от индивидуальных свойств сплавов. Таким образом, большинство сплавов алюминия можно паять. Основным фактором успешного соединения является правильный выбор припоя и флюса.
НАЛИЧИЕ МАТЕРИАЛОВ ДЛЯ ПАЙКИ АЛЮМИНИЯ
Пайку алюминия можно осуществлять низкотемпературными припоями на основе олова с добавками цинка, припоями на основе цинка с добавками алюминия и на основе сплавов алюминий-кремний с добавками меди или германия. Наиболее высокие свойства дает эвтектический силумин алюминий-12 % кремния. Соединения этим припоем обладают высокой прочностью и коррозионной стойкостью. Однако из-за высокой температуры пайки (595—610°С) данный припой позволяет паять не все сплавы алюминия, так как многие высокопрочные сплавы имеют
солидус ниже этой температуры. Без потери коррозионных свойств можно использовать припои системы алюминий—кремний—германий, однако они отличаются высокой стоимостью и не применяются при крупносерийном производстве. Наиболее доступным вариантом является применение припоев системы алюминий—кремний—медь, которые дают высокий уровень прочностных свойств, но имеют пониженную коррозионную стойкость. После пайки соединения желательно покрыть никелем или серебром для изоляции от коррозионного воздействия среды.
Несмотря на широкий выбор сплавов в продаже имеется в широком доступе эвтектический силумин в виде ленты, а проволока и прутки имеются только иностранного производства. Необходимость мелкосерийного производства припоев для пайки алюминия указанных систем очевидна, т.к. отсутствие материалов и выбора сочетания припой-флюс сдерживает организацию новых производств паяных конструкций из алюминиевых сплавов. Сварка в данной ситуации проще, понятней и доступнее.
Для перечисленных высокотемпературных припоев разработано большое количество хлоридных и фторалюминатных флюсов, однако на отечественном рынке присутствует старый и общепринятый флюс 34 А, который содержит большое количество хлорида лития и в процессе пайки образует темное покрытие, мешающее визуальному контролю формирования галтели. Нами также проведен анализ существующих составов и разработаны несколько композиций для альтернативного использования взамен флюса 34 А. В литературе существует описание припоев для пайки алюминия на основе цинка. Однако промышленного применения они не получили. За последнее десятилетие благодаря появлению флюса на основе фторалюмината цезия с температурой активности от 420°С в мировой промышленности для пайки алюминия, его сочетаний с медью
стали использоваться припои на основе цинка с добавками 2, 4, 15 и 20% алюминия. Массовое применение они нашли в производстве холодильников при монтажной пайке алюминиевых трубопроводов и сочетания алюминия с медью. Правильная организация технологии позволяет
получать плотные швы с высокими прочностными и коррозионными свойствами (рис. 2). Следует отметить, что цинковыми припоями возможна пайка большинства алюминиевых сплавов, т. к. температура пайки варьируется от 420 до 500°С в зависимости от состава припоя. НП «Союз профессиональных паяльщиков им С. Н. Лоцманова» в последние годы провел глубокий анализ свойств цинковых припоев, флюсов и возможностей получения с помощью них качественных соединений [2, 3]. Мы опробовали эти припои при пайке теплообменников, ремонте дефектов
литья, пайке трубопроводов и различных корпусных конструкций, включая конструкции из сплава Д16. Если не брать массовое производство автомобильных радиаторов, то для большинства задач пайки алюминия и его сплавов взамен флюса «Ноколок» подходит флюс производства ЗАО «АЛАРМ» марки ФА-40 и паста на его основе ФАП-40. Флюс производится по другой технологии, поэтому обладает отличными от «Ноколок» свойствами при приготовлении паст. Однако при пайке после расплавления его состав приближается к знаменитому фторалюминатному флюсу.
Рис. 2. Микроструктура паяных трубопроводов из алюминия АД1 припоем Zn-4Al.
ВЫВОДЫ
В настоящее время существует достаточная база знаний и опыта как отечественного, так и мирового, для пайки большинства алюминиевых сплавов. Не хватает только изделий, которые необходимо спаять. Таким образом, пытаясь ответить на вопрос: «Почему мы так мало паяем алюминий?», можно заметить связь между потребностью в пайке алюминия и наличия на рынке необходимых для этого материалов. Потребность в пайке возникнет при условии:
• увеличения производства изделий перечисленных выше групп из алюминия и его сплавов;
• учета и использования возможностей пайки при конструировании изделий, особенно при создании серийного и массового производства.
Выпуск известных и новых материалов для пайки алюминия российского производства будет возможен только при росте собственного, а не заимствованного производства. В противном случае он будет ограничен потребностями специальных производств, штучным изготовлением
паяных конструкций или сферой ремонта.
И. Н. Пашков, НП «Союз профессиональных паяльщиков им. С. Н. Лоцманова»
Литература.
о типу конструкции выпускаются следующие радиаторы (теплообменники):
Тип 1. алюминиевые трубчато-пластинчатые сборные. Появились в конце 80-х годов 20 века, изобретение фирмы «Софико» (Франция). Охлаждающая сердцевина состоит из круглых трубок, нанизанных на охлаждающие пластины-«ламели». Используются пластиковые бачки
Тип 2. алюминиевые трубчато-ленточные несборные (паяные). Наиболее распространены в современном автопроме (получили широкое использования с конца 90-х годов 20 века); технология «Ноколок». Имеют охлаждающую сердцевину из трубок плоскоовального сечения и лент, сложенных в виде «гармошек», расположенных между трубок. Используются пластиковые или алюминиевые бачки либо алюминиевые коллекторы.
Тип 3. медно-латунные трубчато-ленточные несборные (паяные). На сегодняшний день используются крайне редко и только для грузовых автомобилей и спецтехники. Также, как и тип 2, имеют сердцевину из плоскоовальных трубок и лент между ними. Отличие от типа 1 – используется медь, а не алюминий. Материал бачков – латунь, возможно использование пластиковых бачков (достаточно редко).
Радиаторы охлаждения и отопления LUZAR алюминиевой трубчато-пластинчатой сборный (непаяной) конструкции
Изготовление автомобильных радиаторов происходит по технологии «Софико». Состоят из сердцевины, собранной из круглых алюминиевых трубок и пакета алюминиевых пластин, доньев, уплотнительных прокладок и бачков, разделительные пластины в которых обеспечивают циркуляцию жидкости внутри радиатора. Для повышения теплоотдачи внутри трубок радиаторов автомобиля устанавливаются турбулизаторы.
Радиаторы охлаждения и отопления LUZAR алюминиевой трубчато-ленточной несборной (паяной) конструкции
Радиаторы охлаждения и отопления LUZAR медно-латунной трубчато-ленточной несборной (паяной) конструкции
Такие радиаторы известны большинству автомобилистов как «медные радиаторы». Состоят из сердцевины, собранной из медных плоскоовальных трубок и медной ленты («гармошки»), спаянной с латунными доньями (опорные пластины, имеющие отверстия для трубок и ребра жесткости для последующего соединения с бачками). Следующим этапом полученный пакет соединяется методом пайки с латунными бачками. Готовое изделие окрашивается (исключение – радиаторы отопления).