Что значит отсортировать массив

Основные виды сортировок и примеры их реализации

Памятка для тех, кто готовится к собеседованию на позицию разработчика

На собеседованиях будущим стажёрам-разработчикам дают задания на знание структур данных и алгоритмов — в том числе сортировок. Академия Яндекса и соавтор специализации «Искусство разработки на современном C++» Илья Шишков составили список для подготовки с методами сортировки, примерами их реализации и гифками, чтобы лучше понять, как они работают.

Пузырьковая сортировка и её улучшения

Сортировка пузырьком

Сортировка пузырьком — один из самых известных алгоритмов сортировки. Здесь нужно последовательно сравнивать значения соседних элементов и менять числа местами, если предыдущее оказывается больше последующего. Таким образом элементы с большими значениями оказываются в конце списка, а с меньшими остаются в начале.

Этот алгоритм считается учебным и почти не применяется на практике из-за низкой эффективности: он медленно работает на тестах, в которых маленькие элементы (их называют «черепахами») стоят в конце массива. Однако на нём основаны многие другие методы, например, шейкерная сортировка и сортировка расчёской.

Сортировка перемешиванием (шейкерная сортировка)

Шейкерная сортировка отличается от пузырьковой тем, что она двунаправленная: алгоритм перемещается не строго слева направо, а сначала слева направо, затем справа налево.

Сортировка расчёской

Сортировка расчёской — улучшение сортировки пузырьком. Её идея состоит в том, чтобы «устранить» элементы с небольшими значения в конце массива, которые замедляют работу алгоритма. Если при пузырьковой и шейкерной сортировках при переборе массива сравниваются соседние элементы, то при «расчёсывании» сначала берётся достаточно большое расстояние между сравниваемыми значениями, а потом оно сужается вплоть до минимального.

Первоначальный разрыв нужно выбирать не случайным образом, а с учётом специальной величины — фактора уменьшения, оптимальное значение которого равно 1,247. Сначала расстояние между элементами будет равняться размеру массива, поделённому на 1,247; на каждом последующем шаге расстояние будет снова делиться на фактор уменьшения — и так до окончания работы алгоритма.

Простые сортировки

Сортировка вставками

При сортировке вставками массив постепенно перебирается слева направо. При этом каждый последующий элемент размещается так, чтобы он оказался между ближайшими элементами с минимальным и максимальным значением.

Сортировка выбором

Сначала нужно рассмотреть подмножество массива и найти в нём максимум (или минимум). Затем выбранное значение меняют местами со значением первого неотсортированного элемента. Этот шаг нужно повторять до тех пор, пока в массиве не закончатся неотсортированные подмассивы.

Быстрая сортировка

Этот алгоритм состоит из трёх шагов. Сначала из массива нужно выбрать один элемент — его обычно называют опорным. Затем другие элементы в массиве перераспределяют так, чтобы элементы меньше опорного оказались до него, а большие или равные — после. А дальше рекурсивно применяют первые два шага к подмассивам справа и слева от опорного значения.

Быструю сортировку изобрели в 1960 году для машинного перевода: тогда словари хранились на магнитных лентах, а сортировка слов обрабатываемого текста позволяла получить переводы за один прогон ленты, без перемотки назад.

Сортировка слиянием

Сортировка слиянием пригодится для таких структур данных, в которых доступ к элементам осуществляется последовательно (например, для потоков). Здесь массив разбивается на две примерно равные части и каждая из них сортируется по отдельности. Затем два отсортированных подмассива сливаются в один.

Пирамидальная сортировка

При этой сортировке сначала строится пирамида из элементов исходного массива. Пирамида (или двоичная куча) — это способ представления элементов, при котором от каждого узла может отходить не больше двух ответвлений. А значение в родительском узле должно быть больше значений в его двух дочерних узлах.

Пирамидальная сортировка похожа на сортировку выбором, где мы сначала ищем максимальный элемент, а затем помещаем его в конец. Дальше нужно рекурсивно повторять ту же операцию для оставшихся элементов.

Источник

Что значит отсортировать массив

Конспект обзорной лекция № 33

для студентов специальности «Прикладная математика»

доцента кафедры ИВТ, к.т.н. Ливак Е.Н.

ОСНОВНЫХ АЛГОРИТМОВ ОБРАБОТКИ ДАННЫХ

Основные понятия, факты

Поиск. Алгоритмы поиска. Методы сортировки. Прямые и улучшенные методы сортировки. Оценка их быстродействия. Рекурсивные алгоритмы. Примеры реализации.

Эффективная реализация основных алгоритмов обработки данных.

Вирт Н. Алгоритмы и структуры данных: Пер. с англ. – 2-е изд., испр. – СПб: Невский Диалект, 2001. – 352 с.

Всем алгоритмам присущи некоторые общие свойства. Перечислим эмпирические (подмеченные на практике) свойства:

· понятность (доступность) – все действия, описанные в алгоритме должны быть понятны исполнителю, то есть должны принадлежать системе действий данного исполнителя.

· определенность (детерминированность) – каждое действие должно быть четко и однозначно определено. «Точное предписание», то есть, предписание, задающее алгоритм, должно выполняться однозначно и последовательно для получения конкретного и однозначного результата;

· конечность – выполнение алгоритма должно завершиться за конечное число шагов;

· результативность (сходимость) – достижение после конечного числа шагов искомого результата;

· дискретность (дискретная структура) – исполнение алгоритма должно состоять из отдельных шагов; Алгоритм представляет собой упорядоченное конечное множество шагов для получения результата. А всякое множество обладает свойством дискретности, то есть в любом алгоритме для каждого шага (кроме последнего), можно указать следующий за ним шаг.

Под алгоритмом понимается единый метод решения определенного класса однотипных задач, обладающий свойством дискретности, массовости, определенности, результативности и оперирующий конструктивными объектами.

Основные (базовые) алгоритмы обработки данных

К основным алгоритмам обработки данных мы будем относить алгоритмы, реализующие наиболее часто встречающиеся в программировании действия.

Такими действиями являются поиск заданного элемента в некотором наборе данных и сортировка наборов данных. Кроме того, к базовым алгоритмам принято относить так называемые рекурсивные алгоритмы в связи с тем, что рекурсия достаточно часто встречается (используется) как в повседневной жизни, так и в математике и компьютерных науках.

Тогда, если для любого k выполнено условие

· x [ k ] x [ k +1], то массив упорядочен по возрастанию

· x [ k ] > x [ k +1], то массив упорядочен по убыванию

· x [ k ] x [ k +1], то массив упорядочен по невозрастанию

· x [ k ] > = x [ k +1], то массив упорядочен по неубыванию

При конструировании эффективных программ (подпрограмм), осуществляющих сортировку массивов, требуется использование

· быстродействующих алгоритмов и

· минимальное использование дополнительной памяти.

В качестве показателя быстродействия алгоритма используют оценку

1) количества операций присваивания;

2) количества операций сравнения.

Методы сортировки делятся на

1. Прямые методы сортировки.

2. Улучшенные методы сортировки.

ПРЯМЫЕ МЕТОДЫ СОРТИРОВКИ

1. Сортировка обменом (метод «пузырька»).

2. Сортировка выбором.

3. Сортировка вставками.

УЛУЧШЕННЫЕ МЕТОДЫ СОРТИРОВКИ

используют те же принципы, что и прямые методы, но улучшают быстродействие сортировки с помощью оригинальных идей.

На практике чаще применяются улучшенные методы сортировки, так как прямые методы имеют относительно низкое быстродействие.

Однако, при небольшой длине массива и/или особом исходном расположении элементов, прямые методы также дают хороший результат.

Рассмотрим принципы основных (прямых) методов сортировки.

Сортировка обменом (метод «пузырька»)

Отыскивается максимальный (минимальный) элемент и переносится в конец массива. Затем этот метод применяется ко всем элементам, кроме последнего (он уже находится на своем месте) и т.д.

Массив разделяется на две части: отсортированную и неотсортированную. Элементы из неотсортированной части поочередно выбираются и вставляются в отсортированную часть таким образом, что не нарушают упорядоченность элементов. В начале в качестве отсортированной части принимают только один первый элемент.

По числу сравнений все методы имеют квадратичную зависимость от длины массива

По числу присваиваний:

· методы обмена и вставки имеют квадратичную зависимость от длины массива

· метод выбора имеет число присваиваний порядка n * ln ( n )

Специалисты советуют использовать метод выбора для сортировки сложных структур данных, в случаях, когда на одно сравнение выполняется большое число присваиваний.

В среднем методы вставки и выбора оказываются приблизительно эквивалентными и в несколько раз (в зависимости от длины массива) лучше, чем метод обмена.

К улучшенным методам сортировки относятся, например, следующие алгоритмы:

ü сортировка с помощью включений с уменьшающимися расстояниями;

ü сортировка с помощью дерева;

ü сортировка с помощью разделения (быстрая сортировка Хоара)

РЕКУРСИВНЫЕ АЛГОРИТМЫ

Встречаются такие случаи, когда задача разбивается на подзадачи, которые в свою очередь имеют ту же структуру, что и основная задача.

В таких случаях используют механизм, который называется рекурсией.

Способ вызова подпрограммы, в котором подпрограмма вызывает сама себя, называют рекурсией.

Подпрограммы, реализующие рекурсию, называются рекурсивными подпрограммами.

Поясним механизм рекурсивных подпрограмм с помощью классического примера использования рекурсии.

Вычисление факториала числа.

Обоснование выбора способа реализации.

Обратим внимание на то, что вычислить факториал числа N можно следующим образом:

Реализуем такой алгоритм с использованием механизма рекурсии.

Так как подпрограмма будет производить вычисление значения, то реализовывать ее будем в виде функции.

function Fact (n: byte) : integer;

if n = 0 then Fact := 1

else Fact := n * Fact(n-1);

Описанный выше механизм часто называют прямой рекурсии.

Механизм применяется для реализации следующей ситуации.

Первая подпрограмма вызывает вторую, еще не описанную.

Продемонстрируем ситуацию на примере.

procedure A (var x: real);

procedure B (var y: real);

Здесь процедура А обращается к процедуре B и наоборот. Какую процедуру первой мы бы ни описали, в любом случае будет ошибка – обращение к еще не описанной процедуре.

Для того, чтобы избежать такой ситуации, используется предварительное описание подпрограмм.

Позже подпрограмма описывается без повторения списка параметров и типа возвращаемого результата.

Правильная реализация вышеприведенного примера будет выглядеть следующим образом.

Источник

Алгоритмы и структуры данных для начинающих: сортировка

Авторизуйтесь

Алгоритмы и структуры данных для начинающих: сортировка

Что значит отсортировать массив

В этой части мы посмотрим на пять основных алгоритмов сортировки данных в массиве. Начнем с самого простого — сортировки пузырьком — и закончим «быстрой сортировкой» (quicksort).

Для каждого алгоритма, кроме объяснения его работы, мы также укажем его сложность по памяти и времени в наихудшем, наилучшем и среднем случае.

Метод Swap

Пузырьковая сортировка

СложностьНаилучший случайВ среднемНаихудший случай
ВремяO(n)O(n 2 )O(n 2 )
ПамятьO(1)O(1)O(1)

Сортировка пузырьком — это самый простой алгоритм сортировки. Он проходит по массиву несколько раз, на каждом этапе перемещая самое большое значение из неотсортированных в конец массива.

10–12 декабря, Онлайн, Беcплатно

Например, у нас есть массив целых чисел:

Что значит отсортировать массив

При первом проходе по массиву мы сравниваем значения 3 и 7. Поскольку 7 больше 3, мы оставляем их как есть. После чего сравниваем 7 и 4. 4 меньше 7, поэтому мы меняем их местами, перемещая семерку на одну позицию ближе к концу массива. Теперь он выглядит так:

Что значит отсортировать массив

Этот процесс повторяется до тех пор, пока семерка не дойдет почти до конца массива. В конце она сравнивается с элементом 8, которое больше, а значит, обмена не происходит. После того, как мы обошли массив один раз, он выглядит так:

Что значит отсортировать массив

Поскольку был совершен по крайней мере один обмен значений, нам нужно пройти по массиву еще раз. В результате этого прохода мы перемещаем на место число 6.

Что значит отсортировать массив

И снова был произведен как минимум один обмен, а значит, проходим по массиву еще раз.

При следующем проходе обмена не производится, что означает, что наш массив отсортирован, и алгоритм закончил свою работу.

Сортировка вставками

СложностьНаилучший случайВ среднемНаихудший случай
ВремяO(n)O(n 2 )O(n 2 )
ПамятьO(1)O(1)O(1)

Сортировка вставками работает, проходя по массиву и перемещая нужное значение в начало массива. После того, как обработана очередная позиция, мы знаем, что все позиции до нее отсортированы, а после нее — нет.

Важный момент: сортировка вставками обрабатывает элементы массива по порядку. Поскольку алгоритм проходит по элементам слева направо, мы знаем, что все, что слева от текущего индекса — уже отсортировано. На этом рисунке показано, как увеличивается отсортированная часть массива с каждым проходом:

Что значит отсортировать массив

Постепенно отсортированная часть массива растет, и, в конце концов, массив окажется упорядоченным.

Давайте взглянем на конкретный пример. Вот наш неотсортированный массив, который мы будем использовать:

Что значит отсортировать массив

Алгоритм начинает работу с индекса 0 и значения 3. Поскольку это первый индекс, массив до него включительно считается отсортированным.

Далее мы переходим к числу 7. Поскольку 7 больше, чем любое значение в отсортированной части, мы переходим к следующему элементу.

На этом этапе элементы с индексами 0..1 отсортированы, а про элементы с индексами 2..n ничего не известно.

Итак, мы нашли индекс 1 (между значениями 3 и 7). Метод Insert осуществляет вставку, удаляя вставляемое значение из массива и сдвигая все значения, начиная с индекса для вставки, вправо. Теперь массив выглядит так:

Что значит отсортировать массив

Теперь часть массива, начиная от нулевого элемента и заканчивая элементом с индексом 2, отсортирована. Следующий проход начинается с индекса 3 и значения 4. По мере работы алгоритма мы продолжаем делать такие вставки.

Что значит отсортировать массив

Когда больше нет возможностей для вставок, массив считается полностью отсортированным, и работа алгоритма закончена.

Сортировка выбором

СложностьНаилучший случайВ среднемНаихудший случай
ВремяO(n)O(n 2 )O(n 2 )
ПамятьO(1)O(1)O(1)

Сортировка выбором — это некий гибрид между пузырьковой и сортировкой вставками. Как и сортировка пузырьком, этот алгоритм проходит по массиву раз за разом, перемещая одно значение на правильную позицию. Однако, в отличие от пузырьковой сортировки, он выбирает наименьшее неотсортированное значение вместо наибольшего. Как и при сортировке вставками, упорядоченная часть массива расположена в начале, в то время как в пузырьковой сортировке она находится в конце.

Давайте посмотрим на работу сортировки выбором на нашем неотсортированном массиве.

Что значит отсортировать массив

При первом проходе алгоритм с помощью метода FindIndexOfSmallestFromIndex пытается найти наименьшее значение в массиве и переместить его в начало.

Имея такой маленький массив, мы сразу можем сказать, что наименьшее значение — 3, и оно уже находится на правильной позиции. На этом этапе мы знаем, что на первой позиции в массиве (индекс 0) находится самое маленькое значение, следовательно, начало массива уже отсортировано. Поэтому мы начинаем второй проход — на этот раз по индексам от 1 до n — 1.

На втором проходе мы определяем, что наименьшее значение — 4. Мы меняем его местами со вторым элементом, семеркой, после чего 4 встает на свою правильную позицию.

Что значит отсортировать массив

Теперь неотсортированная часть массива начинается с индекса 2. Она растет на один элемент при каждом проходе алгоритма. Если на каком-либо проходе мы не сделали ни одного обмена, это означает, что массив отсортирован.

После еще двух проходов алгоритм завершает свою работу:

Что значит отсортировать массив

Сортировка слиянием

СложностьНаилучший случайВ среднемНаихудший случай
ВремяO(n·log n)O(n·log n)O(n·log n)
ПамятьO(n)O(n)O(n)

Разделяй и властвуй

До сих пор мы рассматривали линейные алгоритмы. Они используют мало дополнительной памяти, но имеют квадратичную сложность. На примере сортировки слиянием мы посмотрим на алгоритм типа «разделяй и властвуй» (divide and conquer).

Алгоритмы этого типа работают, разделяя крупную задачу на более мелкие, решаемые проще. Мы пользуемся ими каждый день. К примеру, поиск в телефонной книге — один из примеров такого алгоритма.

Если вы хотите найти человека по фамилии Петров, вы не станете искать, начиная с буквы А и переворачивая по одной странице. Вы, скорее всего, откроете книгу где-то посередине. Если попадете на букву Т, перелистнете несколько страниц назад, возможно, слишком много — до буквы О. Тогда вы пойдете вперед. Таким образом, перелистывая туда и обратно все меньшее количество страниц, вы, в конце концов, найдете нужную.

Насколько эффективны эти алгоритмы?

Предположим, что в телефонной книге 1000 страниц. Если вы открываете ее на середине, вы отбрасываете 500 страниц, в которых нет искомого человека. Если вы не попали на нужную страницу, вы выбираете правую или левую сторону и снова оставляете половину доступных вариантов. Теперь вам надо просмотреть 250 страниц. Таким образом мы делим нашу задачу пополам снова и снова и можем найти человека в телефонной книге всего за 10 просмотров. Это составляет 1% от всего количества страниц, которые нам пришлось бы просмотреть при линейном поиске.

Сортировка слиянием

При сортировке слиянием мы разделяем массив пополам до тех пор, пока каждый участок не станет длиной в один элемент. Затем эти участки возвращаются на место (сливаются) в правильном порядке.

Давайте посмотрим на такой массив:

Что значит отсортировать массив

Разделим его пополам:

Что значит отсортировать массив

И будем делить каждую часть пополам, пока не останутся части с одним элементом:

Что значит отсортировать массив

Теперь, когда мы разделили массив на максимально короткие участки, мы сливаем их в правильном порядке.

Что значит отсортировать массив

Сначала мы получаем группы по два отсортированных элемента, потом «собираем» их в группы по четыре элемента и в конце собираем все вместе в отсортированный массив.

Что значит отсортировать массив

Для работы алгоритма мы должны реализовать следующие операции:

Стоит отметить, что в отличие от линейных алгоритмов сортировки, сортировка слиянием будет делить и склеивать массив вне зависимости от того, был он отсортирован изначально или нет. Поэтому, несмотря на то, что в худшем случае он отработает быстрее, чем линейный, в лучшем случае его производительность будет ниже, чем у линейного. Поэтому сортировка слиянием — не самое лучшее решение, когда надо отсортировать частично упорядоченный массив.

Быстрая сортировка

СложностьНаилучший случайВ среднемНаихудший случай
ВремяO(n·log n)O(n·log n)O(n 2 )
ПамятьO(1)O(1)O(1)

Быстрая сортировка — это еще один алгоритм типа «разделяй и властвуй». Он работает, рекурсивно повторяя следующие шаги:

Давайте посмотрим на работу алгоритма на следующем массиве:

Что значит отсортировать массив

Сначала мы случайным образом выбираем ключевой элемент:

Что значит отсортировать массив

Теперь, когда мы знаем ключевой индекс (4), мы берем значение, находящееся по этому индексу (6), и переносим значения в массиве так, чтобы все числа больше или равные ключевому были в правой части, а все числа меньше ключевого — в левой. Обратите внимание, что в процессе переноса значений индекс ключевого элемента может измениться (мы увидим это вскоре).

Что значит отсортировать массив

На этом этапе мы знаем, что значение 6 находится на правильной позиции. Теперь мы повторяем этот процесс для правой и левой частей массива.

Мы рекурсивно вызываем метод quicksort на каждой из частей. Ключевым элементом в левой части становится пятерка. При перемещении значений она изменит свой индекс. Главное — помнить, что нам важно именно ключевое значение, а не его индекс.

Что значит отсортировать массив

Снова применяем быструю сортировку:

Что значит отсортировать массив

Что значит отсортировать массив

У нас осталось одно неотсортированное значение, а, поскольку мы знаем, что все остальное уже отсортировано, алгоритм завершает работу.

Заключение

На этом мы заканчиваем наш цикл статей по алгоритмам и структурам данных для начинающих. За это время мы рассмотрели связные списки, динамические массивы, двоичное дерево поиска и множества с примерами кода на C#.

Источник

Описание алгоритмов сортировки и сравнение их производительности

Вступление

На эту тему написано уже немало статей. Однако я еще не видел статьи, в которой сравниваются все основные сортировки на большом числе тестов разного типа и размера. Кроме того, далеко не везде выложены реализации и описание набора тестов. Это приводит к тому, что могут возникнуть сомнения в правильности исследования. Однако цель моей работы состоит не только в том, чтобы определить, какие сортировки работают быстрее всего (в целом это и так известно). В первую очередь мне было интересно исследовать алгоритмы, оптимизировать их, чтобы они работали как можно быстрее. Работая над этим, мне удалось придумать эффективную формулу для сортировки Шелла.

Во многом статья посвящена тому, как написать все алгоритмы и протестировать их. Если говорить о самом программировании, то иногда могут возникнуть совершенно неожиданные трудности (во многом благодаря оптимизатору C++). Однако не менее трудно решить, какие именно тесты и в каких количествах нужно сделать. Коды всех алгоритмов, которые выложены в данной статье, написаны мной. Доступны и результаты запусков на всех тестах. Единственное, что я не могу показать — это сами тесты, поскольку они весят почти 140 ГБ. При малейшем подозрении я проверял и код, соответствующий тесту, и сам тест. Надеюсь, что статья Вам понравится.

Описание основных сортировок и их реализация

Я постараюсь кратко и понятно описать сортировки и указать асимптотику, хотя последнее в рамках данной статьи не очень важно (интересно же узнать реальное время работы). О потреблении памяти в дальнейшем ничего писать не буду, замечу только, что сортировки, использующие непростые структуры данных (как, например, сортировка деревом), обычно потребляют ее в больших количествах, а остальные сортировки в худшем случае только создают вспомогательный массив. Также существует понятие стабильности (устойчивости) сортировки. Это значит, что относительный порядок элементов при их равенстве не меняется. Это тоже в рамках данной статьи неважно (в конце концов, можно просто прицепить к элементу его индекс), однако в одном месте пригодится.

Сортировка пузырьком / Bubble sort

Будем идти по массиву слева направо. Если текущий элемент больше следующего, меняем их местами. Делаем так, пока массив не будет отсортирован. Заметим, что после первой итерации самый большой элемент будет находиться в конце массива, на правильном месте. После двух итераций на правильном месте будут стоять два наибольших элемента, и так далее. Очевидно, не более чем после n итераций массив будет отсортирован. Таким образом, асимптотика в худшем и среднем случае – O(n 2 ), в лучшем случае – O(n).

Шейкерная сортировка / Shaker sort

(также известна как сортировка перемешиванием и коктейльная сортировка). Заметим, что сортировка пузырьком работает медленно на тестах, в которых маленькие элементы стоят в конце (их еще называют «черепахами»). Такой элемент на каждом шаге алгоритма будет сдвигаться всего на одну позицию влево. Поэтому будем идти не только слева направо, но и справа налево. Будем поддерживать два указателя begin и end, обозначающих, какой отрезок массива еще не отсортирован. На очередной итерации при достижении end вычитаем из него единицу и движемся справа налево, аналогично, при достижении begin прибавляем единицу и двигаемся слева направо. Асимптотика у алгоритма такая же, как и у сортировки пузырьком, однако реальное время работы лучше.

Сортировка расческой / Comb sort

Еще одна модификация сортировки пузырьком. Для того, чтобы избавиться от «черепах», будем переставлять элементы, стоящие на расстоянии. Зафиксируем его и будем идти слева направо, сравнивая элементы, стоящие на этом расстоянии, переставляя их, если необходимо. Очевидно, это позволит «черепахам» быстро добраться в начало массива. Оптимально изначально взять расстояние равным длине массива, а далее делить его на некоторый коэффициент, равный примерно 1.247. Когда расстояние станет равно единице, выполняется сортировка пузырьком. В лучшем случае асимптотика равна O(nlogn), в худшем – O(n 2 ). Какая асимптотика в среднем мне не очень понятно, на практике похоже на O(nlogn).

Об этих сортировках (пузырьком, шейкерной и расческой) также можно почитать здесь.

Сортировка вставками / Insertion sort

Создадим массив, в котором после завершения алгоритма будет лежать ответ. Будем поочередно вставлять элементы из исходного массива так, чтобы элементы в массиве-ответе всегда были отсортированы. Асимптотика в среднем и худшем случае – O(n 2 ), в лучшем – O(n). Реализовывать алгоритм удобнее по-другому (создавать новый массив и реально что-то вставлять в него относительно сложно): просто сделаем так, чтобы отсортирован был некоторый префикс исходного массива, вместо вставки будем менять текущий элемент с предыдущим, пока они стоят в неправильном порядке.

Сортировка Шелла / Shellsort

Несколько полезных ссылок:

Сортировка деревом / Tree sort

Будем вставлять элементы в двоичное дерево поиска. После того, как все элементы вставлены достаточно обойти дерево в глубину и получить отсортированный массив. Если использовать сбалансированное дерево, например красно-черное, асимптотика будет равна O(nlogn) в худшем, среднем и лучшем случае. В реализации использован контейнер multiset.

Здесь можно почитать про деревья поиска:

Гномья сортировка / Gnome sort

Алгоритм похож на сортировку вставками. Поддерживаем указатель на текущий элемент, если он больше предыдущего или он первый — смещаем указатель на позицию вправо, иначе меняем текущий и предыдущий элементы местами и смещаемся влево.

Сортировка выбором / Selection sort

На очередной итерации будем находить минимум в массиве после текущего элемента и менять его с ним, если надо. Таким образом, после i-ой итерации первые i элементов будут стоять на своих местах. Асимптотика: O(n 2 ) в лучшем, среднем и худшем случае. Нужно отметить, что эту сортировку можно реализовать двумя способами – сохраняя минимум и его индекс или просто переставляя текущий элемент с рассматриваемым, если они стоят в неправильном порядке. Первый способ оказался немного быстрее, поэтому он и реализован.

Пирамидальная сортировка / Heapsort

Развитие идеи сортировки выбором. Воспользуемся структурой данных «куча» (или «пирамида», откуда и название алгоритма). Она позволяет получать минимум за O(1), добавляя элементы и извлекая минимум за O(logn). Таким образом, асимптотика O(nlogn) в худшем, среднем и лучшем случае. Реализовывал кучу я сам, хотя в С++ и есть контейнер priority_queue, поскольку этот контейнер довольно медленный.

Почитать про кучу можно здесь:

Быстрая сортировка / Quicksort

Выберем некоторый опорный элемент. После этого перекинем все элементы, меньшие его, налево, а большие – направо. Рекурсивно вызовемся от каждой из частей. В итоге получим отсортированный массив, так как каждый элемент меньше опорного стоял раньше каждого большего опорного. Асимптотика: O(nlogn) в среднем и лучшем случае, O(n 2 ). Наихудшая оценка достигается при неудачном выборе опорного элемента. Моя реализация этого алгоритма совершенно стандартна, идем одновременно слева и справа, находим пару элементов, таких, что левый элемент больше опорного, а правый меньше, и меняем их местами. Помимо чистой быстрой сортировки, участвовала в сравнении и сортировка, переходящая при малом количестве элементов на сортировку вставками. Константа подобрана тестированием, а сортировка вставками — наилучшая сортировка, подходящая для этой задачи (хотя не стоит из-за этого думать, что она самая быстрая из квадратичных).

Сортировка слиянием / Merge sort

Сортировка, основанная на парадигме «разделяй и властвуй». Разделим массив пополам, рекурсивно отсортируем части, после чего выполним процедуру слияния: поддерживаем два указателя, один на текущий элемент первой части, второй – на текущий элемент второй части. Из этих двух элементов выбираем минимальный, вставляем в ответ и сдвигаем указатель, соответствующий минимуму. Слияние работает за O(n), уровней всего logn, поэтому асимптотика O(nlogn). Эффективно заранее создать временный массив и передать его в качестве аргумента функции. Эта сортировка рекурсивна, как и быстрая, а потому возможен переход на квадратичную при небольшом числе элементов.

Сортировка подсчетом / Counting sort

Создадим массив размера r – l, где l – минимальный, а r – максимальный элемент массива. После этого пройдем по массиву и подсчитаем количество вхождений каждого элемента. Теперь можно пройти по массиву значений и выписать каждое число столько раз, сколько нужно. Асимптотика – O(n + r — l). Можно модифицировать этот алгоритм, чтобы он стал стабильным: для этого определим место, где должно стоять очередное число (это просто префиксные суммы в массиве значений) и будем идти по исходному массиву слева направо, ставя элемент на правильное место и увеличивая позицию на 1. Эта сортировка не тестировалась, поскольку большинство тестов содержало достаточно большие числа, не позволяющие создать массив требуемого размера. Однако она, тем не менее, пригодилась.

Блочная сортировка / Bucket sort

(также известна как корзинная и карманная сортировка). Пусть l – минимальный, а r – максимальный элемент массива. Разобьем элементы на блоки, в первом будут элементы от l до l + k, во втором – от l + k до l + 2k и т.д., где k = (r – l) / количество блоков. В общем-то, если количество блоков равно двум, то данный алгоритм превращается в разновидность быстрой сортировки. Асимптотика этого алгоритма неясна, время работы зависит и от входных данных, и от количества блоков. Утверждается, что на удачных данных время работы линейно. Реализация этого алгоритма оказалась одной из самых трудных задач. Можно сделать это так: просто создавать новые массивы, рекурсивно их сортировать и склеивать. Однако такой подход все же довольно медленный и меня не устроил. В эффективной реализации используется несколько идей:

1) Не будем создавать новых массивов. Для этого воспользуемся техникой сортировки подсчетом – подсчитаем количество элементов в каждом блоке, префиксные суммы и, таким образом, позицию каждого элемента в массиве.

2) Не будем запускаться из пустых блоков. Занесем индексы непустых блоков в отдельный массив и запустимся только от них.

3) Проверим, отсортирован ли массив. Это не ухудшит время работы, так как все равно нужно сделать проход с целью нахождения минимума и максимума, однако позволит алгоритму ускориться на частично отсортированных данных, ведь элементы вставляются в новые блоки в том же порядке, что и в исходном массиве.

4) Поскольку алгоритм получился довольно громоздким, при небольшом количестве элементов он крайне неэффективен. До такой степени, что переход на сортировку вставками ускоряет работу примерно в 10 раз.

Поразрядная сортировка / Radix sort

(также известна как цифровая сортировка). Существует две версии этой сортировки, в которых, на мой взгляд, мало общего, кроме идеи воспользоваться представлением числа в какой-либо системе счисления (например, двоичной).

LSD (least significant digit):

Представим каждое число в двоичном виде. На каждом шаге алгоритма будем сортировать числа таким образом, чтобы они были отсортированы по первым k * i битам, где k – некоторая константа. Из данного определения следует, что на каждом шаге достаточно стабильно сортировать элементы по новым k битам. Для этого идеально подходит сортировка подсчетом (необходимо 2 k памяти и времени, что немного при удачном выборе константы). Асимптотика: O(n), если считать, что числа фиксированного размера (а в противном случае нельзя было бы считать, что сравнение двух чисел выполняется за единицу времени). Реализация довольно проста.

MSD (most significant digit):

На самом деле, некоторая разновидность блочной сортировки. В один блок будут попадать числа с равными k битами. Асимптотика такая же, как и у LSD версии. Реализация очень похожа на блочную сортировку, но проще. В ней используется функция digit, определенная в реализации LSD версии.

Битонная сортировка / Bitonic sort:

Идея данного алгоритма заключается в том, что исходный массив преобразуется в битонную последовательность – последовательность, которая сначала возрастает, а потом убывает. Ее можно эффективно отсортировать следующим образом: разобьем массив на две части, создадим два массива, в первый добавим все элементы, равные минимуму из соответственных элементов каждой из двух частей, а во второй – равные максимуму. Утверждается, что получатся две битонные последовательности, каждую из которых можно рекурсивно отсортировать тем же образом, после чего можно склеить два массива (так как любой элемент первого меньше или равен любого элемента второго). Для того, чтобы преобразовать исходный массив в битонную последовательность, сделаем следующее: если массив состоит из двух элементов, можно просто завершиться, иначе разделим массив пополам, рекурсивно вызовем от половинок алгоритм, после чего отсортируем первую часть по порядку, вторую в обратном порядке и склеим. Очевидно, получится битонная последовательность. Асимптотика: O(nlog 2 n), поскольку при построении битонной последовательности мы использовали сортировку, работающую за O(nlogn), а всего уровней было logn. Также заметим, что размер массива должен быть равен степени двойки, так что, возможно, придется его дополнять фиктивными элементами (что не влияет на асимптотику).

Timsort

Гибридная сортировка, совмещающая сортировку вставками и сортировку слиянием. Разобьем элементы массива на несколько подмассивов небольшого размера, при этом будем расширять подмассив, пока элементы в нем отсортированы. Отсортируем подмассивы сортировкой вставками, пользуясь тем, что она эффективно работает на отсортированных массивах. Далее будем сливать подмассивы как в сортировке слиянием, беря их примерно равного размера (иначе время работы приблизится к квадратичному). Для этого удобного хранить подмассивы в стеке, поддерживая инвариант — чем дальше от вершины, тем больше размер, и сливать подмассивы на верхушке только тогда, когда размер третьего по отдаленности от вершины подмассива больше или равен сумме их размеров. Асимптотика: O(n) в лучшем случае и O(nlogn) в среднем и худшем случае. Реализация нетривиальна, твердой уверенности в ней у меня нет, однако время работы она показала довольно неплохое и согласующееся с моими представлениями о том, как должна работать эта сортировка.

Подробнее timsort описан здесь:

Тестирование

Железо и система

Процессор: Intel Core i7-3770 CPU 3.40 GHz
ОЗУ: 8 ГБ
Тестирование проводилось на почти чистой системе Windows 10 x64, установленной за несколько дней до запуска. Использованная IDE – Microsoft Visual Studio 2015.

Тесты

Размер входных данных

Как проводилось тестирование

На каждом тесте было производилось 20 запусков, итоговое время работы – среднее по получившимся значениям. Почти все результаты были получены после одного запуска программы, однако из-за нескольких ошибок в коде и системных глюков (все же тестирование продолжалось почти неделю чистого времени) некоторые сортировки и тесты пришлось впоследствии перетестировать.

Тонкости реализации

Возможно, кого-то удивит, что в реализации самого процесса тестирования я не использовал указатели на функции, что сильно сократило бы код. Оказалось, что это заметно замедляет работу алгоритма (примерно на 5-10%). Поэтому я использовал отдельный вызов каждой функции (это, конечно, не отразилось бы на относительной скорости, но… все же хочется улучшить и абсолютную). По той же причине были заменены векторы на обычные массивы, не были использованы шаблоны и функции-компараторы. Все это более актуально для промышленного использования алгоритма, нежели его тестирования.

Результаты

Все результаты доступны в нескольких видах – три диаграммы (гистограмма, на которой видно изменение скорости при переходе к следующему ограничению на одном типе тестов, график, изображающий то же самое, но иногда более наглядно, и гистограмма, на которой видно, какая сортировка лучше всего работает на каком-то типе тестов) и таблицы, на которых они основаны. Третья группа была разделена еще на три части, а то мало что было бы понятно. Впрочем, и так далеко не все диаграммы удачны (в полезности третьего типа диаграмм я вообще сильно сомневаюсь), но, надеюсь, каждый сможет найти наиболее подходящую для понимания.

Поскольку картинок очень много, они скрыты спойлерами. Немного комментариев по поводу обозначений. Сортировки названы так, как выше, если это сортировка Шелла, то в скобочках указан автор последовательности, к названиям сортировок, переходящих на сортировку вставками, приписано Ins (для компактности). В диаграммах у второй группы тестов обозначена возможная длина отсортированных подмассивов, у третьей группы — количество свопов, у четвертой — количество замен. Общий результат рассчитывался как среднее по четырем группам.

Первая группа сортировок

Массив случайных чисел

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Совсем скучные результаты, даже частичная отсортированность при небольшом модуле почти незаметна.

Частично отсортированный массив

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массивЧто значит отсортировать массив

Уже гораздо интереснее. Обменные сортировки наиболее бурно отреагировали, шейкерная даже обогнала гномью. Сортировка вставками ускорилась только под самый конец. Сортировка выбором, конечно, работает совершенно также.

Свопы

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Здесь наконец-то проявила себя сортировка вставками, хотя рост скорости у шейкерной примерно такой же. Здесь проявилась слабость сортировки пузырьком — достаточно одного свопа, перемещающего маленький элемент в конец, и она уже работает медленно. Сортировка выбором оказалась почти в конце.

Изменения в перестановке

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Группа почти ничем не отличается от предыдущей, поэтому результаты похожи. Однако сортировка пузырьком вырывается вперед, так как случайный элемент, вставленный в массив, скорее всего будет больше всех остальных, то есть за одну итерацию переместится в конец. Сортировка выбором стала аутсайдером.

Повторы

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Здесь все сортировки (кроме, конечно, сортировки выбором) работали почти одинаково, ускоряясь по мере увеличении количества повторов.

Итоговые результаты

Что значит отсортировать массив

За счет своего абсолютного безразличия к массиву, сортировка выбором, работавшая быстрее всех на случайных данных, все же проиграла сортировке вставками. Гномья сортировка оказалась заметно хуже последней, из-за чего ее практическое применение сомнительно. Шейкерная и пузырьковая сортировки оказались медленнее всех.

Вторая группа сортировок

Массив случайных чисел

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Сортировка Шелла с последовательностью Пратта ведет себя совсем странно, остальные более менее ясно. Сортировка деревом любит частично отсортированные массивы, но не любит повторов, возможно, поэтому самое худшее время работы именно посередине.

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Все как прежде, только Шелл с Праттом усилился на второй группе из-за отсортированности. Также становится заметным влияние асимптотики — сортировка деревом оказывается на втором месте, в отличие от группы с меньшим числом элементов.

Частично отсортированный массив

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массивЧто значит отсортировать массив

Здесь понятным образом ведут себя все сортировки, кроме Шелла с Хиббардом, который почему-то не сразу начинает ускоряться.

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Здесь все, в общем, как и прежде. Даже асимптотика сортировки деревом не помогла ей вырваться с последнего места.

Свопы

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Здесь заметно, что у сортировок Шелла большая зависимость от частичной отсортированности, так как они ведут себя практически линейно, а остальные две только сильно падают на последних группах.

Изменения в перестановке

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Здесь все похоже на предыдущую группу.

Повторы

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Опять все сортировки продемонстрировали удивительную сбалансированность, даже битонная, которая, казалось бы, почти не зависит от массива.

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Итоговые результаты

Что значит отсортировать массивЧто значит отсортировать массив

Убедительное первое место заняла сортировка Шелла по Хиббарду, не уступив ни в одной промежуточной группе. Возможно, стоило ее отправить в первую группу сортировок, но… она слишком слаба для этого, да и тогда почти никого не было бы в группе. Битонная сортировка довольно уверенно заняла второе место. Третье место при миллионе элементах заняла другая сортировка Шелла, а при десяти миллионах сортировка деревом (асимптотика сказалась). Стоит обратить внимание, что при десятикратном увеличении размера входных данных все алгоритмы, кроме древесной сортировки, замедлились почти в 20 раз, а последняя всего лишь в 13.

Третья группа сортировок

Массив случайных чисел

Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив
Что значит отсортировать массив

Что значит отсортировать массив
Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Почти все сортировки этой группы имеют почти одинаковую динамику. Почему же почти все сортировки ускоряются, когда массив частично отсортирован? Обменные сортировки работают быстрее потому, что надо делать меньше обменов, в сортировке Шелла выполняется сортировка вставками, которая сильно ускоряется на таких массивах, в пирамидальной сортировке при вставке элементов сразу завершается просеивание, в сортировке слиянием выполняется в лучшем случае вдвое меньше сравнений. Блочная сортировка работает тем лучше, чем меньше разность между минимальным и максимальным элементом. Принципиально отличается только поразрядная сортировка, которой все это безразлично. LSD-версия работает тем лучше, чем больший модуль. Динамика MSD-версия мне не ясна, то, что она сработала быстрее чем LSD удивило.

Частично отсортированный массив

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Здесь все тоже довольно понятно. Стало заметен алгоритм Timsort, на него отсортированность действует сильнее, чем на остальные. Это позволило этому алгоритму почти сравняться с оптимизированной версией быстрой сортировки. Блочная сортировка, несмотря на улучшение времени работы при частичной отсортированности, не смогла обогнать поразрядную сортировку.

Свопы

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Здесь очень хорошо сработали быстрые сортировки. Это, скорее всего, объясняется удачным выбором опорного элемента. Все остальное почти также, как и в предыдущей группе.

Изменения в перестановке

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Мне удалось достичь желаемой цели — поразрядная сортировка упала даже ниже адаптированной быстрой. Блочная сортировка оказалась лучше остальных. Еще почему-то timsort обогнал встроенную сортировку C++, хотя в предыдущей группе был ниже.

Повторы

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Что значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массивЧто значит отсортировать массив

Здесь все довольно тоскливо, все сортировки работают с одинаковой динамикой (кроме линейных). Из необычного можно заметить, что сортировка слиянием упала ниже сортировки Шелла.

Итоговые результаты

Что значит отсортировать массивЧто значит отсортировать массив

Если говорить о практическом применении, то хороша поразрядная сортировка (особенно lsd-версия), она стабильна, проста в реализации и очень быстра, однако не основана на сравнениях. Из основанных на сравнениях сортировок лучше всего смотрится быстрая сортировка. Ее недостатки — неустойчивость и квадратичное время работы на неудачных входных данных (пусть они и могут встретиться только при намеренном создании теста). Но с этим можно бороться, например, выбирая опорный элемент по какому-нибудь другому принципу, или же переходя на другую сортировку при неудаче (например, introsort, который, если не ошибаюсь, и реализован в С++). Timsort лишен этих недостатков, лучше работает на сильно отсортированных данных, но все же медленнее в целом и гораздо сложнее пишется. Остальные сортировки на данный момент, пожалуй, не очень практичны. Кроме, конечно, сортировки вставками, которую весьма удачно иногда можно вставить в алгоритм.

Заключение

Должен отметить, что не все известные сортировки приняли участие в тестировании, например, была пропущена плавная сортировка (мне просто не удалось ее адекватно реализовать). Впрочем, не думаю, что это большая потеря, эта сортировка очень громоздкая и медленная, как можно видеть, например, из этой статьи: habrahabr.ru/post/133996 Еще можно исследовать сортировки на распараллеливание, но, во-первых, у меня нет опыта, во-вторых, результаты, которые получались, крайне нестабильны, очень велико влияние системы.

Здесь можно посмотреть результаты всех запусков, а также некоторые вспомогательные тестирования: ссылка на документ.

Реализации алгоритмов с векторами остались, но их корректность и хорошую работу не гарантирую. Проще взять коды функций из статьи и переделать. Генераторы тестов тоже могут не соответствовать действительности, на самом деле такой вид они приняли уже после создания тестов, когда нужно было сделать программу более компактной.

В общем, я доволен проделанной работой, надеюсь, что Вам было интересно.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *