Что значит отрицательная степень

Отрицательная степень числа

Степень с отрицательным показателем

Число с отрицательным показателем степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем.

Чтобы разобраться, почему число в отрицательной степени равно дроби, надо вспомнить правило деления степеней с одинаковыми основаниями:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Следовательно, если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:

Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:

Пример 1. Замените дробь степенью с отрицательным показателем:

Пример 2. Представьте в виде степени с отрицательным показателем:

Действия над степенями с отрицательными показателями

При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются:

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя:

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Чтобы возвести произведение в отрицательную степень, надо возвести в эту степень каждый сомножитель отдельно:

Что значит отрицательная степень

Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:

Что значит отрицательная степень

При возведении одной степени (положительной или отрицательной) в степень (положительную или отрицательную) показатели степеней перемножаются:

Источник

Степень с отрицательным показателем

Что такое степень с отрицательным показателем (отрицательная степень)? Как выполнить возведение числа в отрицательную степень? Как возвести в отрицательную степень дробь?

Что значит отрицательная степень

В частности, число в степени минус один — это число, обратное данному:

Что значит отрицательная степень

Если n — целое число, то речь идет о степени с целым отрицательным показателем и равенство верно для любого a, отличного от нуля (т.е. при a≠0).

Если n — дробное число, то речь идет о степени с рациональным показателем:

Что значит отрицательная степень

(m — целое число, n — натуральное число). Степень с дробным показателем определена только для положительных a (a>0).

Что значит отрицательная степень

Дробь в степени с отрицательным показателем равна обратному этой дроби числу в степени с показателем, противоположным данному:

Что значит отрицательная степень

Другими словами, чтобы возвести дробь в отрицательную степень, надо эту дробь «перевернуть»(числитель и знаменатель поменять местами) и изменить знак в показателе степени.

Дробь в минус первой степени — это «перевернутая» дробь.

Что значит отрицательная степень

Рассмотрим примеры возведения чисел в степень с отрицательным показателем.

Для ускорения вычислений используем таблицу степеней.

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Чтобы возвести в отрицательную степень смешанное число, надо сначала перевести его в неправильную дробь:

Что значит отрицательная степень

Что значит отрицательная степень

Возведем числа в степень с дробным отрицательным показателем:

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

При возведении в отрицательную степень десятичной дроби можно сначала перевести ее в обыкновенную и, если возможно, сократить:

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Если в показателе степени стоит десятичная дробь, нужно перевести ее в обыкновенную:

Что значит отрицательная степень

Что значит отрицательная степень

Что значит отрицательная степень

Возведение в степень с отрицательным показателем в алгебре встречается достаточно часто, поэтому важно вовремя усвоить эту тему.

14 комментариев

Спасибо! врубился) жаль, что в школе не учился(

Что ж, учиться никогда не поздно). Но всё же лучше вовремя.

Забавно, что за время работы встречал множество коллег, кому приходилось на внутренних курсах разжёвывать какие вещи начального уровня и все сокрушались: «Что же я в школе-то (институте) не учил это? Это же так просто, понятно, полезно и ИНТЕРЕСНО. »

А вся проблема в том, что ни в школе, ни в институте перед тем, как что-то начать рассказывать не проводят красочные, завлекательные, познавательные, весёлые и игровые презентации будущего курса, чтобы было понятно, а где же то, что будем скоро изучать, применяется в жизни? Каким профессиям и в каких житейских ситуациях это может быть полезно?

Учат каким-то абстрактным формулам вместо того, чтобы рассказать, что это пригодится на кухне, при разделе земли, при строительстве сарая на даче, при стрельбе из пушки, при запуске спутника и т. д.

При разбавлении спирта водой, в конце концов! :))

Ведь часто женщины встают в ступор от элементарной задачи:

В рецепте указано «1 ст. ложка 3 %-го уксуса», а у неё на кухне только 9 % или («О, БОЖЕ! Крах! Провал!») вообще уксусная эссенция! А по сути та же кислота, но в концентрации 70 %…

Вообще-то знание и умение решать примеры с отрицательной степенью никак не поможет в задаче с разными процентами уксуса. Просто заговор против большинства людей))

Источник

Отрицательная степень числа: правила возведения и примеры

В одной из предыдущих статей мы уже упоминали о степени числа. Сегодня мы постараемся сориентироваться в процессе нахождения ее значения. Научно говоря, мы будем выяснять, как правильно возводить в степень. Мы разберемся, как производится этот процесс, одновременно затронем все вероятные показатели степени: натуральный, иррациональный, рациональный, целый.

Итак, давайте подробно рассмотрим решения примеров и выясним, что значит:

Определение понятия

Вот точно отражающее смысл определение: «Возведением в степень называют определение значения степени числа».

Соответственно, возведение числа a в ст. r и процесс нахождения значения степени a с показателем r — это идентичные понятия. К примеру, если стоит задача вычислить значение степени (0,6)6″, то ее можно упростить до выражения «Возвести число 0,6 в степень 6».

После этого можно приступать напрямую к правилам возведения.

Что значит отрицательная степень

Возведение в отрицательную степень

Минусовая степень обозначает, что число множат на него самого такое количество раз, какое значится в ст., а после этого единицу делят на вычисленный результат.

Для наглядности следует обратить внимание на такую цепочку выражений:

110=0,1=1* 10 в минус 1 ст.,

1100=0,01=1*10 в минус 2 степ.,

11000=0,0001=1*10 в минус 3 ст.,

110000=0,00001=1*10 в минус 4 степeни.

Благодаря данным примерам можно четко просмотреть возможность моментально вычислить 10 в любой минусовой степени. Для этой цели достаточно банально сдвигать десятичную составляющую:

Так же легко понять по данной схеме, сколько будет составлять 10 в минус 5 ст. —

Что значит отрицательная степень

Как возвести число в натуральную степeнь

Вспоминая определение, учитываем, что натуральное число a в ст. n равняется произведению из n множителей, при этом каждый из них равняется a. Проиллюстрируем: (а*а*…а)n, где n — это количество чисел, которые умножаются. Соответственно, чтобы a возвести в n, необходимо рассчитать произведение следующего вида: а*а*…а разделить на n раз.

Отсюда становится очевидно, что возведение в натуральную ст. опирается на умение осуществлять умножение (этот материал освещен в разделе про умножение действительных чисел). Давайте рассмотрим задачу:

Мы имеем дело с натуральным показателем. Соответственно, ход решения будет следующим: (-2) в cт. 4 = (-2)*(-2)*(-2)*(-2). Теперь осталось только осуществить умножение целых численностей:(-2)*(-2)*(-2)*(-2). Получаем 16.

Пример:

Вычислите значение: три целых две седьмых в квадрате.

Данный пример равняется следующему произведению: три целых две седьмых умножить на три целых две седьмых. Припомнив, как осуществляется умножение смешанных чисел, завершаем возведение:

Возведение в иррациональную стeпeнь

Касаемо вопроса возведения в иррациональный показатель, следует отметить что расчеты начинают проводить после завершения предварительного округления основы степени до какого-либо разряда, который позволил бы получить величину с заданной точностью. К примеру, нам необходимо возвести число П (пи) в квадрат.

Начинаем с того, что округляем П до сотых и получаем:

П в квадрате = (3,14)2=9,8596. Однако если сократить П до десятитысячных, получим П=3,14159. Тогда возведение в квадрат получает совсем другое чиcло: 9,8695877281.

Здесь следует отметить, что во многих задачах нет надобности возводить иррациональные числа в cтeпeнь. Как правило, ответ вписывается или в виде, собственно, степени, к примеру, корень из 6 в степени 3, либо, если позволит выражение, проводится его преобразование: корень из 5 в 7 cтепeни = 125 корень из 5.

Что значит отрицательная степень

Как возвести чиcло в целую степень

Эту алгебраическую манипуляцию уместно принимать во внимание для следующих случаев:

Поскольку практически все целые положительные числа совпадают с массой чисел натуральных, то постановка в положительную целую степень — это тот же процесс, что и постановка в ст. натуральную. Данный процесс мы описали в предшествующем пункте.

Теперь поговорим о вычислении ст. нулевой. Мы уже выяснили выше, что нулевую степень числа a можно определить для любого отличного от нуля a (действительного), при этом a в ст. 0 будет равно 1.

Соответственно, возведение какого угодно действительного числа в нулевую ст. будет давать единицу.

К примеру, 10 в ст.0=1, (-3,65)0=1, а 0 в ст. 0 нельзя определить.

Пример:

Вычислить значение числа 2 в кубе с целым отрицательным показателем.

Согласно определению стeпeни с отрицательным показателем обозначаем: два в минус 3 ст. равняется один к двум в третьей cтепeни.

Знаменатель рассчитывается просто: два в кубе;

Ответ: два в минус 3-й ст. = одна восьмая.

Видео

Из этого видео вы узнаете, что делать, если степень с отрицательным показателем.

Источник

Отрицательная степень

Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».

Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.

Как возвести число в отрицательную степень

Чтобы возвести число в отрицательную степень нужно:

Общая формула возведения в отрицательную степень выглядит следующим образом.

Примеры возведения в отрицательную степень.

Любое число в нулевой степени — единица.

Примеры возведения в нулевую степень.

Как найти 10 в минус 1 степени

В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:

Теперь, зная определение отрицательной степени, давайте разберемся, почему « 10 » в минус первой степени равно « 0,1 ».

Возведем « 10 −1 » по правилам отрицательной степени. Перевернем « 10 » и запишем её в виде дроби «

1
10

» и заменим отрицательную степень « −1 » на
положительную степень « 1 ».

Возведем « 10 » в « 1 » степень. Помним, что любое число в первой степени равно самому числу.

Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.

По такому же принципу можно найти « 10 » в минус второй, третьей и т.д.

Для упрощения перевода « 10 » в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один ».

Проверим правило выше для « 10 −2 ».

Т.к. у нас степень « −2 », значит, будет всего один ноль (положительное значение степени « 2 − 1 = 1 ». Сразу после запятой ставим один ноль и за ним « 1 ».

Т.к. у нас степень « −1 », значит, нулей после запятой не будет (положительное значение степени « 1 − 1 = 0 ». Сразу после запятой ставим « 1 ».

То же самое правило работает и для « 10 −12 ». При переводе в десятичную дробь будет « 12 − 1 = 11 » нулей и « 1 » в конце.

Как возвести в отрицательную степень дробь

Чтобы возвести дробь в отрицательную степень нужно:

Пример. Требуется возвести в отрицательную степень дробь.

Перевернем дробь «

10
3

» и заменим отрицательную степень « −3 » на положительную « 3 ».

Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель « 3 », и знаменатель « 10 » в третью степень.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

Для более грамотного ответа запишем полученный результат в виде десятичной дроби.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

= 0,027

Как возвести отрицательное число в отрицательную степень

Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.

Перевернем число « −5 » и заменим отрицательную степень « −2 »
на положительную « 2 ».

Далее откроем скобки и возведем во вторую степень и числитель « 1 »,
и знаменатель « 5 ».

Как возвести отрицательную дробь в отрицательную степень

Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.

Разберемся на примере. Задание: возвести отрицательную дробь « (−

2
3

) » в « −3 » степень.

По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень « −3 » на положительную « 3 ».

Теперь определим конечный знак результата возведения в « 3 » степень.

Нам остается только раскрыть скобки и возвести в степень и числитель « 3 », и знаменатель « 2 » в третью степень.

Для окончательного ответа выделим целую часть из дроби.

Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.

(−

9
11

) −2 = (−

11
9

) 2 =

11 2
9 2

=

121
81

= 1

40
81

Свойства отрицательной степени

Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.

В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.

Примеры решений заданий с отрицательной
степенью

Колягин 9 класс. Задание № 1

Представить в виде степени.

Колягин 9 класс. Задание № 5

Записать в виде степени с отрицательным числом.

Источник

Возведение числа в отрицательную степень

Как известно, в математике существуют не только положительные числа, но и отрицательные. Если знакомство с положительными степенями начинается с определения площади квадрата, то с отрицательными всё несколько сложнее.

Основные понятия и положения

Возведение в отрицательную степень числа по модулю от нуля до единицы

Сначала нам следует вспомнить, что такое модуль. Это расстояние на координатной прямой от выбранного нами значения до начала отсчёта (нуля координатной прямой). По определению он никогда не может быть отрицательным.

Значение больше нуля

При значении цифры в промежутке от нуля до единицы отрицательный показатель даёт увеличение самой цифры. Происходит это из-за уменьшения знаменателя, остающегося при этом положительным.

Рассмотрим на примерах:

Значение меньше нуля

Сейчас рассмотрим как возводить в отрицательную степень, если цифра меньше нуля. Принцип тот же, что и в предыдущей части, но здесь имеет значение знак показателя.

Опять-таки обратимся к примерам:

В данном случае, мы видим, что модуль продолжает расти, а вот знак зависит от чётности или нечётности показателя.

Следует заметить, если мы возводим единицу, то она всегда останется сама собой. В случае, если нужно возвести число минус один, то при чётном показателе степени она превратится в единицу, при нечётном останется минус единицей.

Что значит отрицательная степень

Возведение в целую отрицательную степень если модуль больше единицы

Для цифр, чей модуль больше единицы, есть свои особенности действий. Прежде всего, нужно целую часть дроби перевести в числитель, то есть перевести в неправильную дробь. Если у нас имеется десятичная дробь, то её необходимо перевести в обычную. Делается это следующим образом:

Теперь рассмотрим, как возвести число в отрицательную степень в данных условиях. Уже из вышеизложенного, мы можем предположить, чего нам ждать от результата вычислений. Так как двойная дробь при упрощениях переворачивается, то модуль цифры будет уменьшаться тем быстрее, чем больше модуль показателя.

Для начала рассмотрим ситуацию, когда данная в задании цифра положительная.

Прежде всего, становится понятно, что конечный результат будет больше нуля, ибо деление двух положительных всегда дает положительное. Снова рассмотрим на примерах как это делается:

Как видим, особых сложностей действия не вызывают, и все наши первоначальные предположения оказались истинными.

Теперь обратимся к случаю отрицательной цифры.

Для начала можно предположить, что если показатель чётный, то итог будет положительным, если показатель нечётный, то и результат окажется отрицательным. Все предыдущие наши выкладки в данной части, будем считать действительными и сейчас. И снова разберём на примерах:

Таким образом, все наши рассуждения оказались верными.

Что значит отрицательная степень

Возведение в случае отрицательного дробного показателя

Здесь нужно запомнить что подобное возведение есть извлечение корня степени знаменателя из числа в степени числителя. Все предыдущие наши рассуждения остаются верными и на сей раз. Поясним наши действия на примере:

В этом случае, нужно иметь в виду, что извлечение корней высокого уровня возможно только в специально подобранном виде и, скорее всего, избавиться от знака радикала (корня квадратного, кубического и так далее) при точных вычислениях вам не удастся.

Все же, подробно изучив предыдущие главы, сложностей в школьных вычислениях ожидать не стоит.

Следует заметить, что под описание данной главы подходит и возведение с заведомо иррациональным показателем, например, если показатель равен минус ПИ. Действовать нужно по вышеописанным принципам. Однако, вычисления в подобных случаях становятся настолько сложными, что под силу только мощным электронно-вычислительным машинам.

Что значит отрицательная степень

Заключение

Действие, которое мы изучали, является одной из самых сложнейших задач в математике (особенно в случае дробно-рационального или иррационального его значения). Однако, подробно и пошагово изучив данную инструкцию, можно научиться без особых проблем проделывать это на полном автомате.

Видео

В видео подробно рассказывается о том, как производить вычисления, если степень с отрицательным показателем.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *