Что значит основание системы счисления

Что такое основание и база системы счисления?

Определение: Основанием системы счисления называется количество разных знаков либо символов, которые
используются для изображения цифр в этой системе.
Основанием принимают всякое натуральное число — 2, 3, 4, 16 и т.д. То есть, существует безграничное
множество позиционных систем. Например для десятичной системы основание равно 10.

Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная.

База системы — это последовательность цифр, используемых для записи числа. Ни в одной системе нет цифры, равной основанию системы.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Десятичная система счисления

Мы все привыкли при счете использовать цифры и числа, знакомые нам с детства. Один, два, три, четыре и т.д. В нашей повседневной системе счисления всего десять цифр (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), из которых мы составляем любые числа. Дойдя до десятка, мы добавляем единицу к разряду левее и снова начинаем в самом правом разряде отсчитывать с нуля. Такая система счисления называется десятичной.

Не трудно догадаться, что выбрали её наши предки потому что количество палецев на обеих руках равно десяти. Но какие еще бывают системы счисления? Всегда ли использовали десятичную систему счисления или были и другие?

История возникновения систем счисления

До изобретения нуля для записи чисел применялись специальные знаки. У каждого народа они были своими. В Древнем Риме, например, господствовала непозиционная система счисления.

Систему счисления называют непозиционной, если значение цифры не зависит от занимаемого ею места. Наиболее совершенными системами счисления считались системы счисления, которые использовались на Руси и в Древней Греции.

В них большие числа обозначали буквами, но с добавлением дополнительных значков (1 – a, 100 –i и т.д.). Другой непозиционной системой счисления являлась система, которая использовалась в Древнем Вавилоне. В своей системе жители Вавилона использовали запись в «два этажа» и всего три знака: Единица в вавилонской системе счисления — для единицы, Десяток в вавилонской системе счисления — для десятка и Нуль в вавилонской системе счисления — для нуля.

Позиционные системы счисления

Шагом вперед стали позиционные системы. Сейчас повсеместно победила десятичная, но есть и другие системы, часто используемые в прикладных науках. Примером такой системы счисления может служить двоичная система счисления.
Двоичная система счисления

Именно на ней общаются компьютеры и вся электроника у вас дома. В этой системе счисления используются всего две цифры: 0 и 1. Вы спросите, почему было не научить компьютер считать до десяти, как человека? Ответ кроется на поверхности.

Научить машину различать два символа легко: включено – значит, 1, выключено – значит 0; есть ток – 1, нет тока – 0. Были попытки сделать машины, которые могли бы различать большее количество цифр. Но все они оказались ненадежными, компьютеры все время путали: то ли 1 к ним пришло, то ли 2.

Нас окружает множество различных систем счисления. Каждая из них полезна в своей области. И ответ на вопрос, какую и когда использовать, остается за нами.

Источник

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Источник

Глава 4. Арифметические основы компьютеров


4.1. Что такое система счисления?

Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

4.2. Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Целые числа в любой системе счисления порождаются с помощью Правила счета [44]:

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

4.3. Какие системы счисления используют специалисты для общения с компьютером?


4.4. Почему люди пользуются десятичной системой, а компьютеры — двоичной?

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.

4.5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

4.6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

4.7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

4.8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

4.9. Сводная таблица переводов целых чисел из одной системы счисления в другую

Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.

Порядок переводов определим в соответствии с рисунком:

Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.

Сводная таблица переводов целых чисел

4.10. Как производятся арифметические операции в позиционных системах счисления?


Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в двоичной системе

Сложение в восьмеричной системе

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Шестнадцатеричная: F 16 +6 16

Проверка. Преобразуем полученные суммы к десятичному виду:
10101 2 = 2 4 + 2 2 + 2 0 = 16+4+1=21,
25 8 = 2*8 1 + 5*8 0 = 16 + 5 = 21,
15 16 = 1*16 1 + 5*16 0 = 16+5 = 21.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F 16 +7 16 +3 16

Проверка:
11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25,
31 8 = 3*8 1 + 1*8 0 = 24 + 1 = 25,
19 16 = 1*16 1 + 9*16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Вычитание

Пример 6. Вычтем число 59,75 из числа 201,25.

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 –1 = 141,5;
215,4 8 = 2*8 2 + 1*8 1 + 5*8 0 + 4*8 –1 = 141,5;
8D,8 16 = 8*16 1 + D*16 0 + 8*16 –1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Проверка. Преобразуем полученные произведения к десятичному виду:
11110 2 = 2 4 + 2 3 + 2 2 + 2 1 = 30;
36 8 = 3•8 1 + 6•8 0 = 30.

Пример 8. Перемножим числа 115 и 51.

Проверка. Преобразуем полученные произведения к десятичному виду:
1011011101001 2 = 2 12 + 2 10 + 2 9 + 2 7 + 2 6 + 2 5 + 2 3 + 2 0 = 5865;
13351 8 = 1*8 4 + 3*8 3 + 3*8 2 + 5*8 1 + 1*8 0 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 13351 8 :163 8

Проверка. Преобразуем полученные частные к десятичному виду:
110011 2 = 2 5 + 2 4 + 2 1 + 2 0 = 51; 63 8 = 6*8 1 + 3*8 0 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 43 8 : 16 8

4.11. Как представляются в компьютере целые числа?

Целые числа могут представляться в компьютере со знаком или без знака.

а) число 72 10 = 1001000 2 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

4.12. Как компьютер выполняет арифметические действия над целыми числами?


Сложение и вычитание

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

4. А и В отрицательные. Например:

Полученный первоначально неправильный результат (обратный код числа –11 10 вместо обратного кода числа –10 10 ) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Умножение и деление

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

4.13. Как представляются в компьютере вещественные числа?

Вещественными числами (в отличие от целых) в компьютерной технике называются числа, имеющие дробную часть.

Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:

Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе.

Примеры нормализованного представления:

Десятичная система Двоичная система

Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов.

В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:

Форматы вещественных чиселРазмер в байтахПримерный диапазон абсолютных значенийКоличество значащих десятичных цифр
Одинарный410 –45 … 10 387 или 8
Вещественный610 –39 … 10 3811 или 12
Двойной810 –324 … 10 30815 или 16
Расширенный1010 –4932 … 10 493219 или 20

При хранении числа с плавающей точкой отводятся разряды для мантиссы, порядка, знака числа и знака порядка:

· Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа.

· Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате.

Покажем на примерах, как записываются некоторые числа в нормализованном виде в четырехбайтовом формате с семью разрядами для записи порядка.

1. Число 6.25 10 = 110.01 2 = 0,11001•2 11 :

2. Число –0.125 10 = –0.0012 = –0.1*2 –10 (отрицательный порядок записан в дополнительном коде):

4.14. Как компьютер выполняет арифметические действия над нормализованными числами?

К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ.

Сложение и вычитание

В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу.

Умножение

При умножении двух нормализованных чисел их порядки складываются, а мантиссы перемножаются.

Пример 3. Выполнить умножение двоичных нормализованных чисел:

Деление

При делении двух нормализованных чисел из порядка делимого вычитается порядок делителя, а мантисса делимого делится на мантиссу делителя. Затем в случае необходимости полученный результат нормализуется.

Пример 4. Выполнить деление двоичных нормализованных чисел:

Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства.

4.15. Упражнения

4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления.

4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число?

4.6. В какой системе счисления 21 + 24 = 100?

4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.

4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления.

4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления.

4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

4.22. Разделите 10010110 2 на 1010 2 и проверьте результат, умножая делитель на частное.

4.23. Разделите 10011010100 2 на 1100 2 и затем выполните соответствующее десятичное и восьмеричное деление.

4.27. Запишите числа в прямом коде (формат 1 байт):

а) 31; б) –63; в) 65; г) –128.

4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт):

а) –9; б) –15; в) –127; г) –128.

4.29. Найдите десятичные представления чисел, записанных в дополнительном коде:

а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000.

4.30. Найдите десятичные представления чисел, записанных в обратном коде:

а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000.

Источник

Системы счисления. Основные понятия.

Запись числа в некоторой системе счисления называется кодом числа.

Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.

Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся

на однородные и смешанные.

Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не

зависит от позиции (разряда).

Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости

от её места в строке, соответствует только 1 предмет.

Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.

Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.

Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению

50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)

одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,

(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может

отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде

В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в

числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции

Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда

меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.

Самая первая система счисления — единичная (непозиционная).

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в

последовательности цифр, которые изображают число.

Каждая позиционная система характеризуется своим основанием.

Основание позиционной системы счисления – это количество разных знаков либо символов, которые

используются для изображения цифр в этой системе.

множество позиционных систем.

Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.

Таблица соответствия цифр в различных системах счисления.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *