Что значит основание системы счисления
Что такое основание и база системы счисления?
Определение: Основанием системы счисления называется количество разных знаков либо символов, которые
используются для изображения цифр в этой системе.
Основанием принимают всякое натуральное число — 2, 3, 4, 16 и т.д. То есть, существует безграничное
множество позиционных систем. Например для десятичной системы основание равно 10.
Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная.
База системы — это последовательность цифр, используемых для записи числа. Ни в одной системе нет цифры, равной основанию системы.
Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.
Десятичная система счисления
Мы все привыкли при счете использовать цифры и числа, знакомые нам с детства. Один, два, три, четыре и т.д. В нашей повседневной системе счисления всего десять цифр (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), из которых мы составляем любые числа. Дойдя до десятка, мы добавляем единицу к разряду левее и снова начинаем в самом правом разряде отсчитывать с нуля. Такая система счисления называется десятичной.
Не трудно догадаться, что выбрали её наши предки потому что количество палецев на обеих руках равно десяти. Но какие еще бывают системы счисления? Всегда ли использовали десятичную систему счисления или были и другие?
История возникновения систем счисления
До изобретения нуля для записи чисел применялись специальные знаки. У каждого народа они были своими. В Древнем Риме, например, господствовала непозиционная система счисления.
Систему счисления называют непозиционной, если значение цифры не зависит от занимаемого ею места. Наиболее совершенными системами счисления считались системы счисления, которые использовались на Руси и в Древней Греции.
В них большие числа обозначали буквами, но с добавлением дополнительных значков (1 – a, 100 –i и т.д.). Другой непозиционной системой счисления являлась система, которая использовалась в Древнем Вавилоне. В своей системе жители Вавилона использовали запись в «два этажа» и всего три знака: Единица в вавилонской системе счисления — для единицы, Десяток в вавилонской системе счисления — для десятка и Нуль в вавилонской системе счисления — для нуля.
Позиционные системы счисления
Шагом вперед стали позиционные системы. Сейчас повсеместно победила десятичная, но есть и другие системы, часто используемые в прикладных науках. Примером такой системы счисления может служить двоичная система счисления.
Двоичная система счисления
Именно на ней общаются компьютеры и вся электроника у вас дома. В этой системе счисления используются всего две цифры: 0 и 1. Вы спросите, почему было не научить компьютер считать до десяти, как человека? Ответ кроется на поверхности.
Научить машину различать два символа легко: включено – значит, 1, выключено – значит 0; есть ток – 1, нет тока – 0. Были попытки сделать машины, которые могли бы различать большее количество цифр. Но все они оказались ненадежными, компьютеры все время путали: то ли 1 к ним пришло, то ли 2.
Нас окружает множество различных систем счисления. Каждая из них полезна в своей области. И ответ на вопрос, какую и когда использовать, остается за нами.
Системы счисления
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).
Системы счисления бывают:
Непозиционные системы счисления
Примеры: унарная, римская, древнерусская и др.
Позиционные системы счисления
Основание системы счисления —
количество различных цифр, используемых в этой системе.
отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде
где i — номер разряда, а s — основание системы счисления.
Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:
По определению веса разряда
где i — номер разряда, а s — основание системы счисления.
Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:
Например, для системы счисления с основанием 4:
Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5
Таким образом, для перевода числа из любой системы счисления в десятичную следует:
Вспомним пример перевода из системы счисления с основанием 4 в десятичную:
13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114
Иначе это можно записать так:
114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024
Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно
Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.
В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:
Глава 4. Арифметические основы компьютеров
4.1. Что такое система счисления?
Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр). |
Существуют позиционные и непозиционные системы счисления.
В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.
Сама же запись числа 757,7 означает сокращенную запись выражения
Любая позиционная система счисления характеризуется своим основанием.
Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе. |
За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения
где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.
4.2. Как порождаются целые числа в позиционных системах счисления?
В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.
Продвижением цифры называют замену её следующей по величине. |
Целые числа в любой системе счисления порождаются с помощью Правила счета [44]:
Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё. |
4.3. Какие системы счисления используют специалисты для общения с компьютером?
4.4. Почему люди пользуются десятичной системой, а компьютеры — двоичной?
Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.
4.5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?
Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.
Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).
Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр). |
4.6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?
Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
4.7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?
Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.
Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
4.8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?
При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления. |
4.9. Сводная таблица переводов целых чисел из одной системы счисления в другую
Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.
Порядок переводов определим в соответствии с рисунком:
Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.
Сводная таблица переводов целых чисел
4.10. Как производятся арифметические операции в позиционных системах счисления?
Сложение
Таблицы сложения легко составить, используя Правило Счета.