Что значит округлить до целого числа

Округление чисел

теория по математике 📈 числа и вычисления

Это значит заменить его близким по значению числом. Все числа, полученные при округлении, называют приближенным значением числа. Для записи вместо знака равно (=) используют знак приближенно равно (≈).

Округление целых чисел

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д. Если, например, двузначное число округляется до десятков, то нулями заменяем цифру в разряде единицы. Если трехзначное число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков. И так далее.

Правила округления целых чисел

При округлении целых чисел до какого-либо разряда вместо всех следующих за ним цифр младших разрядов пишут нули. При этом, если первая цифра, которая следует за этим разрядом равна 0, 1, 2, 3 или 4, то цифра в данном разряде не изменяется. Если же первая цифра, которая следует за этим разрядом, равна 5, 6, 7, 8 или 9, то цифра в данном разряде увеличивается на 1.

Пример №1. 452≈450. Выполнено округление числа 452 до десятков (для наглядности цифру 5 выделили). Так как после десятков в наименьшем разряде единиц стоит число 2, то 5 не увеличили. Вместо 2 поставили нуль.

Пример №2. 9874≈9900 Выполнено округление до сотен. После сотен первое число в наименьшем разряде – 7, поэтому 8 увеличили на 1, а цифры 7 и 4 заменили соответственно нулями.

Пример №3. 9874≈10 000 Выполнено округление до тысяч. Также видно, что после тысяч стоит число 8, поэтому 9 увеличиваем на 1 и получаем 10 тысяч. Остальные цифры заменили нулями в соответствии с правилом округления.

Округление десятичных дробей

При округлении десятичной дроби до какого-либо разряда вместо всех следующих за ним цифр младших разрядов пишут нули, если это целая часть, и отбрасывают числа, если это дробная часть. При этом, если первая цифра, которая следует за разрядом равна 0, 1, 2, 3 или 4, то цифра в данном разряде не изменяется. Если же первая цифра, которая следует за этим разрядом, равна 5, 6, 7, 8 или 9, то цифра в данном разряде увеличивается на 1.

Пример №4. 0,14≈0,1 Дробь округлили до десятых, так как число сотых равно 4, то 1 не увеличивали. Цифру 4 отбросили.

Пример №5. 3,85742≈3,86 Дробь округлили до сотых, так как число тысячных равно 7, то число 5 увеличиваем на 1 в соответствии с правилом округления. Цифры 742 отбрасывают.

Пример №6. 2,00123≈2,00 Дробь округлили до сотых. Так как число тысячных равно 1, то 0 не увеличивают, при этом он остается на своем месте в записи дроби, так как он показывает – до какого разряда округлили десятичную дробь.

Пример №7. 16,82≈17 Дробь округлили до единиц целой части. Так как после 6 единиц стоит число 8, то 6 увеличивают на 1. Цифры 8 и 2 отбрасывают.

Источник

Как правильно округлять числа после запятой

Далеко не все умеют округлять числа правильно. Например, купив товар за 1469 рублей, чаще всего люди говорят, что потратили полторы тысячи. В целом это так, но некоторые правила округления нарушаются. Чтобы этого избежать, мы с вами поговорим о том, как правильно работать с числами.

Зачем нужно округление

Округлять числа необходимо для точности измерений. В некоторых сферах жизни погрешности в расчетах могут иметь очень серьезные последствия. Для этого существует метрология — наука, изучающая правила округления чисел и погрешности.

Приведем несколько примеров, в которых неправильное округление не приведет ни к чему страшному:

Однако есть ситуации, где правильное округление является необходимостью. Наверняка читатель мог подумать, зачем нужна какая-то наука об округлении? Ведь все просто — округлять можно как в большую, так и в меньшую сторону, в зависимости от личной выгоды. Такой принцип применим не ко всем сферам жизни. Науку об округлении в первую очередь необходимо изучать инженерам-электроникам.

Что значит округлить до целого числа

Люди, которые учились в технических институтах, знают, что при разработке определенных приборов необходимо провести много различных расчетов. Чаще всего промежуточными результатами этих расчетов являются нецелые числа. Чтобы они не повлияли на конечный результат, их нужно округлять только по определённым правилам либо вообще этого не делать, а работать с конечным результатом.

Суть в том, что погрешность может быть довольно велика (около 5 процентов), и это может плохо кончиться. Например, посчитанное значение напряжения тока в электрической цепи может быть неподходящим, и техническое устройство работать не будет. Или того хуже, инженера может ударить током.

Чтобы избежать подобных казусов, студентам технических вузов и инженерам необходимо знать правила округления.

Правила округления чисел

В основе округления лежат математические правила:

Что значит округлить до целого числа

В метрологии — науке об округлениях и погрешностях, результат принято округлять до двух значащих цифр. Что же это значит? Значащая цифра — это цифра от первой, отличной от нуля.

Есть три случая, для которых есть свои особенности округления:

Когда мы имеем дело с числами меньше единицы, необходимо округлять результат до двух знаков после запятой. Например, число 0,7342. Округляем это число до 0,734, а потом до 0,73. Именно так и должен быть округлён результат. Первый ноль не является значащей цифрой.

Попробуем округлить 8,357. Первая цифра 8 является значащей, так как она отлична от нуля. Соответственно, нам необходимо округлить результат до одного знака после запятой. Согласно правилам, о которых мы говорили выше, результат будет равен 8,4.

Теперь самый сложный случай. Попробуем округлить 47,336. Так как все цифры отличны от нуля, мы будем округлять результат до целого числа. По математическим правилам он будет равен 47. Если мы имеем дело с трёхзначным числом, необходимо округлить результат до двух знаков, после чего умножить на 10 в нужной степени. Пример: округляем 4289,346 и получаем 43, умноженное на десять в квадрате.

Именно для того и нужна метрология, чтобы правильно округлять и записывать результат в технической документации. А также для избежания ошибок при ведении расчетов в разработке технических устройств.

Что значит округлить до целого числа

Заключение

Теперь вы знаете, как правильно округлять и сможете делать все необходимые расчеты самостоятельно. Главное, доходы округлять в меньшую сторону, а расходы — в большую. И тогда вам точно будет хватать денег на все покупки, и останется небольшая сумма, которую можно потратить на развлечения. Успехов вам!

Видео

В нашем видео подробно рассказано о правилах округления чисел — с примерами.

Источник

Округленные числа

Онлайн калькулятор для округления чисел, до целого, разряда, десятков, сотен, тысяч. Округлить дробное число.

Если нужно округлить число, это означает, что сократится его значение до сотых, десятков или тысячных, остальные значения откидываются.

При округлении, число которое отбрасывается и будет играть главную роль. Если это чисто от 0 до 5, то округляемое число остается без изменения. Когда число от 5 до 9, округляемое число увеличивается на 1.

Что значит округлить до целого числаПример:
Нужно округлить число 35,948 до сотых.
Это означает, что цифра 8 будет откинута. При этом предыдущая цифра, а это 4 в данном случае будет увеличена на 1.
Имеем: 35,948 = 35,95

Пример:
Нужно округлить число 0,738 до десятых.
Значит, что нужно откинуть две последние цифры – 38, обращаем внимание на следующую после той, которая остается – это 3. В данном случае оно меньше 5, поэтому изменения не проводятся.
Если цифра, которая отбрасывается равна 5, то к оставшейся добавляется 1.
Когда нужно округлить, например число 0,795 до сотых, отбрасывается 5, значит к предыдущей цифре добавляется 1. Так как у нас это 9, получится 10, соответственно 7 превратится в 8: 0,795 = 0,80.

Источник

Округление чисел

Приближённые значения

Иногда в вычисления нет необходимости использовать точные числовые значения. Для ускорения или упрощения расчётов очень часто достаточно получения приближенного результата. Для этого производят округления чисел, которые участвуют в расчетах а также и конечный результат вычислений. Приближённые значения используют тогда, когда точное значение чего-либо найти невозможно, или же это значение не важно для исследуемого предмета.

Например можно сказать, что дорога до дома занимает полчаса. Это прибличительное значение, поскольку точно сказать сколько времени займет путь до дома или слишком сложно или в большинстве случаев не так важно. Главное обозначить порядок чисел и этого бывает вполне достаточно.

В математике приближенные значения указываются с помощью специального знака.

Чтобы указать приблизительное значение чего-либо, используют округление чисел.

Округление чисел

Суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.

Первое правило округления:

Второе правило округления:

Третье правило округления:

Как округлить число до целого

Правило округления числа до целого

Чтобы округлить число до целого (или округлить число до единиц), надо отбросить запятую и все числа, стоящие после запятой.

Примеры округления числа до целого:

\[ 86,\underline 2 4 \approx 86 \]
Чтобы округлить число до целого, отбрасываем запятую и все стоящие после нее числа. Так как первая отброшенная цифра 2, предыдущую цифру не изменяем. Читают: «восемьдесят шесть целых двадцать четыре сотых приближенно равно восьмидесяти шести целым».

\[ 274,\underline 8 39 \approx 275 \]
Округляя число до целого, отбрасываем запятую и все следующие за ней цифры. Так как первая из отброшенных цифр равна 8, предыдущую увеличиваем на единицу. Читают: «Двести семьдесят четыре целых восемьсот тридцать девять тысячных приближенно равно двести семидесяти пяти целым».

\[ 0,\underline 5 2 \approx 1 \]
При округлении числа до целого запятую и все стоящие за ней цифры отбрасываем. Поскольку первая из отброшенных цифр — 5, предыдущую увеличиваем на единицу. Читают: «Нуль целых пятьдесят две сотых приближенно равно одной целой».

\[ 0,\underline 3 97 \approx 0 \]
Запятую и все стоящие после нее цифры отбрасываем. Первая из отброшенных цифр — 3, поэтому предыдущую цифру не изменяем. Читают: «Нуль целых триста девяносто семь тысячных приближенно равно нуль целых».

\[ 39,\underline 7 04 \approx 40 \]
Первая из отброшенных цифр — 7, значит, стоящую перед ней цифру увеличиваем на единицу. Читают: «Тридцать девять целых семьсот четыре тысячных приближенно равно сорока целым». И еще пара примеров на округление числа до целых:

Как округлить до десятых

Правило округления числа до десятых.

Чтобы округлить десятичную дробь до десятых, надо оставить после запятой только одну цифру, а все остальные следующие за ней цифры отбросить.

Примеры округления до десятых числа:

\[ 23,7\underline 5 \approx 23,8 \]
Чтобы округлить число до десятых, оставляем после запятой первую цифру, а остальное отбрасываем. Так как первая отброшенная цифра 5, то предыдущую цифру увеличиваем на единицу. Читают: «Двадцать три целых семьдесят пять сотых приближенно равно двадцать три целых восемь десятых».

\[ 348,3\underline 1 \approx 348,3 \]
Чтобы округлить до десятых данное число, оставляем после запятой лишь первую цифру, остальное — отбрасываем. Первая отброшенная цифра 1, поэтому предыдущую цифру не изменяем. Читают: «Триста сорок восемь целых тридцать одна сотая приближенно равно триста сорок одна целая три десятых».

\[ 49,9\underline 6 2 \approx 50,0 \]
Округляя до десятых, оставляем после запятой одну цифру, а остальные — отбрасываем. Первая из отброшенных цифр — 6, значит, предыдущую увеличиваем на единицу. Читают: «Сорок девять целых, девятьсот шестьдесят две тысячных приближенно равно пятьдесят целых, нуль десятых».

\[ 7,0\underline 2 8 \approx 7,0 \]
Округляем до десятых, поэтому после запятой оставляем только первую из цифр, остальные — отбрасываем. Первая из отброшенных цифр — 4, значит предыдущую цифру оставляем без изменений. Читают: «Семь целых двадцать восемь тысячных приближенно равно семь целых нуль десятых».

\[ 56,8\underline 7 06 \approx 56,9 \]
Чтобы округлить до десятых данное число, после запятой оставляет одну цифру, а все следующие за ней — отбрасываем. Так как первая отброшенная цифра — 7, следовательно, к предыдущей прибавляем единицу. Читают: «Пятьдесят шесть целых восемь тысяч семьсот шесть десятитысячных приближенно равно пятьдесят шесть целых, девять десятых».

Как округлить число до сотых

Правило округления числа до сотых

Чтобы округлить число до сотых, надо оставить после запятой две цифры, а остальные отбросить.

Пример округления числа до сотых:

\[ 32,78\underline 6 \approx 32,79 \]
Чтобы округлить число до сотых, оставляем после запятой две цифры, а следующую за ними цифру отбрасываем. Поскольку эта цифра — 9, предыдущую цифру увеличиваем на единицу. Читают: «Тридцать две целых семьсот восемьдесят шесть тысячных приближенно равно тридцать две целых семьдесят девять сотых».

\[ 6,96\underline 1 \approx 6,96 \]
Округляя данное число до сотых, оставляем после запятой две цифры, а третью — отбрасываем. Так как отброшенная цифра — 1, предыдущую цифру оставляем без изменений. Читают: «Шесть целых девятьсот шестьдесят одна тысячная приближенно равно шесть целых девяносто шесть сотых».

\[ 17,48\underline 3 9 \approx 17,48 \]
При округлении до сотых оставляем после запятой две цифры, остальные — отбрасываем. Первая из отброшенных цифр — 3, поэтому предыдущую цифру не изменяем. Читают: «Семнадцать целых четыре тысячи тридцать девять десятитысячных приближенно равно семнадцать целых сорок восемь сотых».

\[ 0,12\underline 5 4 \approx 0,13 \]
Чтобы округлить данное число до сотых, после запятой оставим лишь две цифры, а остальные — отбросим. Первая из отброшенных цифр равна 5, поэтому предыдущую цифру увеличиваем на единицу. Читают: «Нуль целых тысяча двести пятьдесят четыре тысячных приближенно равно нуль целых тринадцать сотых».

\[ 549,30\underline 7 3 \approx 549,31 \]
При округлении числа до сотых оставляем после запятой две цифры, остальные — отбрасываем. Поскольку первая из отброшенных цифр — 7, предыдущую цифру увеличиваем на единицу. Читаем: «Пятьсот сорок девять целых, три тысячи семьдесят три десятитысячных приближенно равно пятьсот сорок девять целых, тридцать одна сотая».

Как округлить число до тысячных

Правило округления числа до тысячных

Чтобы округлить десятичную дробь до тысячных, надо оставить после запятой только три цифры, а остальные следующие за ней цифры отбросить.

Пример кругления числа до тысячных:

\[ 3,785\underline 4 \approx 3,785 \]
Чтобы округлить число до тысячных, после запятой нужно оставить лишь три цифры, а четвертую — отбросить. Поскольку отброшенная цифра — 4, предыдущую цифру оставляем без изменений. Читают: «Три целых, семь тысяч восемьсот пятьдесят четыре десятитысячных приближенно равно три целых, семьсот восемьдесят пять тысячных».

\[ 37,207\underline 6 \approx 37,208 \]
Чтобы округлить это число до тысячных, после запятой оставляем три цифры, а четвертую — отбрасываем. Отброшенная цифра — 6, значит предыдущую цифру увеличиваем на единицу. Читают: «Тридцать семь целых две тысячи семьдесят шесть десятитысячных приближенно равно тридцать семь целых двести восемь тысячных».

\[ 69,999\underline 8 1 \approx 70,000 \]
Округляя число до тысячных, оставляем после запятой три цифры, а все остальные — отбрасываем. Так как первая из отброшенных цифр — 8, к предыдущей прибавляем единицу. Читают: «Шестьдесят девять целых девяносто девять тысяч девятьсот восемьдесят одна стотысячная приближенно равно семьдесят целых нуль тысячных».

\[ 863,124\underline 2 3 \approx 863,124 \]
Округляем число до тысячных, поэтому после запятой оставляем первые три цифры, а следующие за ними — отбрасываем. Так как первая из отброшенных цифр — 2, то предыдущую цифру не меняем. Читают: «Восемьсот шестьдесят три целых двенадцать тысяч четыреста двадцать три стотысячных приближенно равно восемьсот шестьдесят три целых сто двадцать четыре тысячных».

\[ 0,003\underline 5 9 \approx 0,004 \]
Чтобы округлить данное число до тысячных, первые три цифры, стоящие после запятой, оставляем, а все остальные — отбрасываем. Первая из отброшенных цифр равна 5, а это означает, что предыдущую цифру следует увеличить на единицу. Читают: «Нуль целых триста пятьдесят девять стотысячных приближенно равно нуль целых четыре тысячных».

Как округлить число до десятков

Правило округления числа до десятков

Чтобы округлить число до десятков, нужно цифру в разряде единиц заменить нулем, а если в записи числа есть цифры после запятой, то их следует отбросить.

Примеры округления числа до десятков:

\[ 58\underline 3 \approx 580 \]
Чтобы округлить число до десятков, цифру в разряде единиц (то есть последнюю цифру в записи натурального числа) заменяем нулем. Так как эта цифра равна 3, предыдущую цифру не изменяем. Читают: «Пятьсот восемьдесят три приближенно равно пятьсот восемьдесят».

\[ 103\underline 7 \approx 1040 \]
Округляем до десятков, поэтому цифру в разряде единиц заменяем на нуль. Поскольку эта цифра — 7, предыдущую увеличиваем на единицу. Читают: «Тысяча тридцать семь приближенно равно тысяча сорок».

Как округлить число до сотен

Правило округления числа до сотен

Чтобы округлить число до сотен, надо цифры в разряде единиц и десятков заменить нулями. При округлении до сотен десятичной дроби запятую и все стоящие после нее цифры отбрасывают.

Примеры округления числа до сотен:

\[ 23\underline 1 7 \approx 2300 \]
Чтобы округлить до сотен это число, цифры в разряде единиц и десятков (то есть две последние цифры в записи) заменяем нулями. Так как первая из замененных на нуль цифр равна 1, предыдущую цифру не изменяем. Читают: «Две тысячи триста семнадцать приближенно равно две тысячи триста».

\[ 45\underline 8 1 \approx 4600 \]
Округляя данное число до сотен, две последние цифры в его записи заменяем на нули. Поскольку первая из замененных нулем цифр равна 8, предыдущую цифру увеличиваем на единицу. Читают: «Четыре тысячи пятьсот восемьдесят один приближенно равно четыре тысячи шестьсот».

\[ 785\underline 0 9 \approx 78500 \]
Округляем число до сотен, значит две последние цифры в записи числа — десятки и единицы — заменяем нулями. Первая из замененных нулем цифр равна нулю, поэтому предыдущую переписываем без изменений. Читают: «Семьдесят восемь тысяч пятьсот девять приближенно равно семьдесят восемь тысяч пятьсот».

\[ 939\underline 5 2 \approx 94000 \]
Чтобы округлить до сотен данное число, в разрядах десятков и единиц цифры заменяем на нули. Так как первая из замененных на нуль цифр — 9, предыдущую увеличиваем на единицу. Читают: «Девяносто три тысячи девятьсот пятьдесят два приближенно равно девяносто четыре тысячи».

\[ 14\underline 7 3,12 \approx 1500 \]
Чтобы округлить до сотен десятичную дробь, запятую и все стоящие после запятой цифры необходимо отбросить, а две последние цифры целой части (единицы и десятки) — заменить нулями. Первая из замененных на нуль цифр равна 7, поэтому к предыдущей цифре прибавляем единицу. Читают: «Тысяча четыреста семьдесят три целых двенадцать сотых приближенно равно тысяча пятьсот».

Как округлить число до тысяч

Правило округления числа до тысяч

Чтобы округлить число до тысяч, надо цифры в разрядах сотен, десятков и единиц заменить нулями. При округлении до тысяч десятичной дроби запятую и все стоящие после нее цифры нужно отбросить.

Примеры округления числа до тысяч :

\[ 82\underline 3 71 \approx 82000 \]
Чтобы округлить до тысяч это число, надо цифры в разрядах сотен, десятков и единиц заменить нулями (у тысяч три нуля в конце записи, столько же нулей в конце числа должно получиться и при округлении до тысяч). Так как первая из цифр, которую мы заменили на нуль, равна 3, то предыдущую цифру оставляем без изменений. Читают: «Восемьдесят две тысячи триста семьдесят один приближенно равно восемьдесят две тысячи».

\[ 40\underline 6 28 \approx 41000 \]
При округлении до тысяч три последних цифры — в разрядах сотен, десятков и единиц — заменяем на нули. Так как первая из замененных нулем цифр равна 6, предыдущую цифру увеличиваем на единицу. Читают: «Сорок тысяч шестьсот двадцать восемь приближенно равно сорок одна тысяча».

\[ 159\underline 7 32 \approx 160000 \]
Округляя до тысяч данное число, цифры в разрядах сотен, десятков и единиц заменяем нулями. Первая из замененных нулем цифр равна 7, поэтому к предыдущей цифре прибавляем единицу. Читают: «Сто пятьдесят девять тысяч семьсот тридцать два приближенно равно сто шестьдесят тысяч».

\[ 238\underline 1 97 \approx 238000 \]
Округляем число до тысяч, поэтому цифры в разрядах сотен, десятков и единиц заменяем на нули. Так как первая из цифр, которую мы заменили нулем, равна 1, то предыдущую цифру переписываем без изменений. Читают: «Двести тридцать восемь тысяч сто девяносто семь приближенно равно двести тридцать восемь тысяч».

\[ 457\underline 2 49,83 \approx 457000 \]
Чтобы округлить десятичную дробь до тысяч, запятую и все цифры после запятой отбрасываем, а цифры в разрядах сотен, десятков и единиц заменяем нулями. Так как первая из замененных нулем цифр — 2, то предыдущую цифру не изменяем. Читают: «Четыреста пятьдесят семь тысяч двести сорок девять целых, восемьдесят три сотых приближенно равно четыреста пятьдесят тысяч».

Источник

Округление чисел до целых, десятых, сотых, тысячных

Задача округления чисел известна со школьной скамьи. Округление применяется для того, чтобы в результате получить числа более удобные для восприятия и дальнейших расчетов.

В результате округления получается приближенное число.

Для обозначения округления используют знак приблизительно равно ≈

Округление чисел онлайн калькулятор

Калькулятор округляет число до заданного количество значащих цифр после запятой. Введите округляемое число и нужно количество значащих цифр. В результате вы получите округленное число и все возможные варианты округления:

Просто выберите нужный вариант округления.

Правила округления

Первое правило

Если первая из отделяемых цифр больше или равна 5, то последняя оставляемая цифра усиливается (увеличивается на единицу).

Пример: округлим до десятых число 123,456. В разряде десятых находится цифра 4, а следом за ним цифра 5. По первому правилу округления мы должны усилить разряд десятых, то есть увеличить его на единицу. Таким образом в результате округления до десятых получим 123,456 ≈ 123,5.

Второе правило

Если первая из отделяемых цифр меньше или равна 4, то последняя оставляемая цифра записывается без изменений.

Пример: округлим до сотых число 123,4523. В разряде сотых находится цифра 5, а следом за ним цифра 2. По второму правилу округления оставляем цифру в разряде сотых без изменения. Таким образом в результате округления до сотых получим 123,4523 ≈ 123,45.

Пример: округлим число π Пи (3,14) до десятых. После числа 1, которое стоит в разряде десятых идет число 4. Соответственно, по правилам округления записываем десятые без изменения. Получаем: 3,14 ≈ 3,1.

Третье правило

Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится к ближайшему четному числу. При этом последняя сохраняемая цифра оставляется неизменной, если она четная, и усиливается, если она нечетная. Такое округление называют банковским или бухгалтерским округлением. Оно отличается от математического округления.

Пример: округлим до целых число 2,5 используя математическое округление. В разряде десятых у нас находится цифра 5, значит по первому правилу округления мы усиливаем разряд единиц и получаем 2,5 ≈ 3.

Если же необходимо округлить по правилам банковского округления, то так как после 5 у нас нет значащих цифр, а 2 — число четное, то оставляем разряд единиц без изменения и получаем, что 2,5 ≈ 2. Вот такой парадокс. Имейте это ввиду при округлении чисел.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *