Что значит однозначное декодирование информатика
Кодирование информации
Определение: |
Кодирование информации (англ. information coding) — отображение данных на кодовые слова. |
Обычно в процессе кодирования информация преобразуется из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической обработки. В более узком смысле кодированием информации называют представление информации в виде кода. Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.
Содержание
Код [ править ]
Виды кодов [ править ]
Все вышеперечисленные коды являются однозначно декодируемыми — для такого кода любое слово, составленное из кодовых слов, можно декодировать только единственным способом.
Примеры кодов [ править ]
Однозначно декодируемый код [ править ]
Определение: |
Однозначно декодируемый код (англ. uniquely decodable code) — код, в котором любое слово составленное из кодовых слов можно декодировать только единственным способом. |
Пусть есть код заданный следующей кодовой таблицей:
[math]a_1 \rightarrow b_1[/math]
[math]a_2 \rightarrow b_2[/math]
[math]a_k \rightarrow b_k[/math]
Код является однозначно декодируемым, только тогда, когда для любых строк, составленных из кодовых слов, вида:
Всегда выполняются равенства:
Заметим, что если среди кодовых слов будут одинаковые, то однозначно декодировать этот код мы уже не сможем.
Префиксный код [ править ]
Определение: |
Префиксный код (англ. prefix code) — код, в котором никакое кодовое слово не является префиксом какого-то другого кодового слова. |
Предпочтение префиксным кодам отдается из-за того, что они упрощают декодирование. Поскольку никакое кодовое слово не выступает в роли префикса другого, кодовое слово, с которого начинается файл, определяется однозначно, как и все последующие кодовые слова.
Пример кодирования [ править ]
Закодируем строку [math]abacaba[/math] :
Такой код можно однозначно разбить на слова:
[math]00\ 01\ 00\ 1\ 00\ 01\ 00[/math]
Преимущества префиксных кодов [ править ]
Недостатки префиксных кодов [ править ]
Пример неудачного декодирования [ править ]
Предположим, что последовательность [math]abacaba[/math] из примера передалась неверно и стала:
[math]c^<**>(abacaba) = 0001001\ 1\ 00100[/math]
Разобьем ее согласно словарю:
[math] 00\ 01\ 00\ 1\ 1\ 00\ 1\ 00[/math]
[math]a\quad b\quad a\ c\ c\quad a\ c\ a[/math]
Полученная строка совпадает только в битах, которые находились до ошибочного, поэтому декодирование неравномерного кода, содержащего ошибки, может дать абсолютно неверные результаты.
Не префиксный однозначно декодируемый код [ править ]
Как уже было сказано, префиксный код всегда однозначно декодируем. Обратное в общем случае неверно:
Мы можем ее однозначно декодировать, так как знаем, что слева от двойки и справа от тройки всегда стоит единица.
После декодирования получаем: [math]abbca[/math]
Мысли вслух
вторник, 23 октября 2012 г.
Ещё раз про однозначное декодирование
Введение
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А — 00, Б — 01, В — 100, Г — 101, Д — 110. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.
1) для буквы Д — 11; 2) это невозможно; 3) для буквы Г — 10; 4) для буквы Д — 10
Как показывает практика, эта задача вызывает серьезные трудности не только у многих учеников, но даже у учителей информатики.
Нужно сказать, что этот материал практически не рассматривается в существующих школьных учебниках информатики, поэтому все (как ученики, так и учителя) вынуждены разбираться самостоятельно. В то же время вузовские учебники 4, где соответствующая теория изложена строго и научно, достаточно сложны для понимания. Попробуем разобраться в сути кодирования и декодирования на школьном уровне, то есть так, как можно объяснить ученикам 8-11 классов.
В чём проблема?
Предположим, нам нужно передать сообщение по цифровым каналам связи. Для этого его необходимо закодировать, то есть сопоставить каждому символу исходного сообщения некоторый код (кодовое слово). Для определенности будем использовать двоичные коды, то есть последовательности нулей и единиц.
Пример 1. Пусть для кодирования фразы «МАМА МЫЛА ЛАМУ» выбран такой код:
М | А | Ы | Л | У | пробел | (1) |
---|---|---|---|---|---|---|
00 | 1 | 01 | 0 | 10 | 11 |
Коды букв «сцепляются» в одну битовую строку и передаются, например, по сети:
Эта цепочка битов приходит в пункт назначения, и тут возникает проблема — как восстановить исходное сообщение (конечно, при условии, что мы знаем код, то есть знаем все пары «символ–кодовое слово», которые использовались при кодировании).
Итак, мы получили 0010011100010111010010. Легко понять, что при использовании кода (1) раскодировать такое сообщение можно самыми разными способами. Например, можно предположить, что оно составлено только из букв А (код 1) и Л (код 0). Тогда получаем
В общем, ни мамы, ни ламы.
Определение. Код называется однозначно декодируемым, если любое кодовое сообщение можно расшифровать единственным способом (однозначно).
Сказанное выше означает, что код (1) НЕ является однозначно декодируемым. Как же определить, является ли заданный код однозначно декодируемым? Этим вопросом мы и займемся.
Равномерные коды
Проблема состоит в том, чтобы правильно разбить полученную битовую цепочку на отдельные кодовые слова. Для того, чтобы её решить, можно, например, использовать равномерный код, то есть код, в котором все кодовые слова имеют одинаковую длину. Например, в нашей фразе 6 символов, поэтому можно использовать 3-битный код (который позволяет закодировать 8 = 2 3 различных символов).
Пример 2. Закодируем фразу из примера 1, используя код:
М | А | Ы | Л | У | пробел | (2) |
---|---|---|---|---|---|---|
000 | 001 | 010 | 011 | 100 | 101 |
Получаем закодированное сообщение
Длина этого сообщения — 42 бита вместо 22 в предыдущем варианте, зато его легко разбить на отдельные кодовые слова и раскодировать («_» обозначает пробел):
Видим, что равномерные коды неэкономичны (закодированное сообщение в примере 2 почти в два раза длиннее, чем в примере 1), но зато декодируются однозначно.
Неравномерные коды
Для того, чтобы сократить длину сообщения, можно попробовать применить неравномерный код, то есть код, в котором кодовые слова, соответствующие разным символам исходного алфавита, могут иметь разную длину.
Пример 3. Используем для кодирования фразы из примера 1 следующий код:
М | А | Ы | Л | У | пробел | (3) |
---|---|---|---|---|---|---|
01 | 00 | 1011 | 100 | 1010 | 11 |
Получаем
Здесь 34 бита. Это, конечно, не 22, но и не 42.
Несложно показать, что эта битовая цепочка декодируется однозначно. Действительно, первая буква — М (код 01), потому что ни одно другое кодовое слово не начинается с 01. Аналогично определяем, что вторая буква — А. Действительно, за 01 следует 00 (код буквы А) и никакое другое кодовое слово не начинается с 00. Это же свойство, которое называется условием Фано, выполняется не только для кодовых слов 01 и 00, но и кодовых слов всех других букв (проверьте это самостоятельно).
Условие Фано. Никакое кодовое слово не совпадает с началом другого кодового слова.
Коды, для которых выполняется условие Фано, называют префиксными (префикс слова — это его начальный фрагмент). Все сообщения, закодированные с помощью префиксных кодов, декодируются однозначно.
Префиксные коды имеют важное практическое значение — они позволяют декодировать символы полученного сообщение по мере его получения, не дожидаясь, пока всё сообщение будет доставлено получателю.
Упражнение. Расшифруйте сообщение, закодированное кодом (3). При расшифровке кода очередной буквы не заглядывайте вперёд!
Термины «условие Фано» и «префиксный код» не используются в заданиях ЕГЭ и ГИА, однако для решения этих задача важно, чтобы ученики понимали содержание условия Фано.
Пример 4. Рассмотрим ещё один код
М | А | Ы | Л | У | пробел | (4) |
---|---|---|---|---|---|---|
10 | 00 | 1101 | 001 | 0101 | 11 |
Ясно, что он не является префиксным: код буквы А (00) совпадает с началом кода буквы Л (001) и код пробела (11) совпадает с началом кода буквы Ы (11). Закодированное сообщение
также имеет длину 34 бита, как и при использовании кода (3). Начнем раскодировать с начала. Ясно, что первой стоит буква М, потому что ни один другой код не начинается с 10. Затем — комбинация 001, которая может быть кодом буквы Л или кодом буквы А (00), за которым следует код буквы Ы или пробела. Получается, что для декодирования сообщения нам нужно «заглядывать вперёд», что очень неудобно.
Попробуем декодировать с конца битовой строки. Последние биты 0101 могут представлять только букву У, следующие 10 — только букву М и т.д. Можно проверить, что теперь сообщение однозначно декодируется с конца! Это происходит потому, что выполняется условие, которое можно назвать «обратным» условием Фано: никакое кодовое слово не совпадает с окончанием другого кодового слова. Коды, для которых выполняется обратное условие Фано, называют постфиксными (постфикс или суффикс слова — это его конечный фрагмент). В этом случае тоже обеспечивается однозначное декодирование. Таким образом,
Сообщение декодируется однозначно, если для используемого кода выполняется прямое или обратное условие Фано.
Однозначно декодируемые коды
Пример 5. Рассмотрим код, предназначенный для кодирования сообщений, состоящих только из букв А, Б и В:
А | Б | В | (5) |
---|---|---|---|
0 | 11 | 010 |
Так как код буквы А (0) совпадает как с началом, так и с концом кода буквы В (010), для этого кода не выполняются ни прямое, ни обратное условие Фано. Поэтому пока мы не можем с уверенностью сказать, декодируется ли он однозначно.
Закодируем сообщение
и попытаемся раскодировать эту строку, используя код (5). В первую очередь, замечаем, что две соседние единицы могут появиться только при использовании буквы Б (код 11), поэтому сразу выделяем две таких группы:
Здесь жёлтым фоном выделена уже декодированная часть сообщения. В оставшейся части единица может появиться только в коде буквы В (010), в битовой строке находим две такие группы:
Оставшиеся нули — это коды букв А. Анализ алгоритма показывает, что такой код всегда однозначно декодируется.
Полный ответ на вопрос об однозначной декодируемости получил в начале 1960-х годов советский математик Ал.А. Марков, предложивший решение с помощью графов [2]. Продемонстрируем его метод на примере.
Пример 6. Рассмотрим код
А | Б | В | Г | Д | (6) |
---|---|---|---|---|---|
01 | 010 | 011 | 11 | 101 |
Здесь не выполняется ни «прямое», ни «обратное» условие Фано, поэтому возможно, что декодировать сообщение однозначно не удастся. Но утверждать это заранее нельзя.
Код является однозначно декодируемым тогда и только тогда, когда в построенном таким образом графе нет ориентированных циклов, включающих вершину Λ.
Таким образом, код (6) не обладает свойством однозначной декодируемости.
Проверим таким же способом код (5), который, как мы уже выяснили, не является ни префиксным, ни постфиксным. Множество последовательностей, которые совпадают с началом и концом кодовых слов, состоит из пустой строки и единицы: <Λ, 1>. Граф, построенный с помощью приведённого выше алгоритма, содержит два узла и одну петлю:
В этом графе нет цикла, содержащего вершину Λ, поэтому любое сообщение, записанное с помощью такого кода, декодируется однозначно. Выше мы показали это с помощью простых рассуждений.
Нужно отметить, что на практике применяются, главным образом, префиксные коды, поскольку они позволяют декодировать сообщение по мере его получения, не дожидаясь окончания приёма данных.
Ещё примеры
Пример 7. Рассмотрим задачу А9 из демо-варианта КИМ ЕГЭ-2013 [1], которая сформулирована в начале статьи. Нужно оптимизировать код
выбрав один из вариантов
Решение. Сначала давайте посмотрим на исходный код, приведённый в условии. Можно заметить, что он префиксный — для него выполняется условие Фано: ни один из трехбитных кодов не начинается ни с 00 (код А), ни с 01 (код Б). Поэтому сообщения, закодированные с помощью такого кода, декодируются однозначно.
Заметим, что «обратное» условие Фано не выполняется: код буквы А (00) совпадает с окончанием кода буквы В (100), а код буквы Б (01) совпадает с окончанием кода буквы Г (101).
Теперь проверим, что получится, если сократить код буквы Д до 11 (вариант 1). Свойство однозначной декодируемости может быть потеряно только тогда, когда в результате такого сокращения нарушится условие Фано, то есть код буквы Д совпадёт с началом какого-то другого кодового слова. Видим, что этого не произошло — нет других кодовых слов, которые начинаются с 11, поэтому вариант 1 — это и есть верное решение.
Остается убедиться, что варианты 3 и 4 не подходят. Если мы сократим код буквы Г до 10 (вариант 3), условие Фано оказывается нарушенным, так как теперь код буквы Г (10) совпал с началом кода буквы В (100). Одновременно нарушено и «обратное» условие Фано: код буквы А (00) совпадает с окончанием кода буквы В (100). Но, как мы знаем, при этом код может всё-таки быть однозначно декодируемым.
Конечно, можно построить граф, как было сделано выше, и проверить, есть ли в нём циклы, включающие вершину Λ. В данном случае граф выглядит так:
Построение и анализ графа — дело достаточно трудоемкое и требующее аккуратности. Обычно в таких случаях значительно легче просто подобрать последовательность, которая может быть декодирована двумя разными способами.
Наконец, нужно убедиться, что вариант 4 не удовлетворяет условию. Если мы сократим код буквы Д до 10, условие Фано оказывается нарушенным, так как теперь код буквы Д (10) совпал с началом кода буквы В (100). Как и раньше, нарушено «обратное» условие Фано: код буквы А (00) совпадает с окончанием кода буквы В (100) и код буквы Б (01) совпадает с окончанием кода буквы Г (101).
Построим граф по методу Ал.А. Маркова:
Пример 8. Оптимизируйте код
сохранив свойство однозначной декодируемости сообщений. Выберите один из вариантов:
Решение. Определим, за счёт чего обеспечивается однозначная декодируемость исходного кода. Легко видеть, что код префиксный — для него выполняется условие Фано: ни одно из трёхбитовых кодовых слов не начинается ни с 11 (код А), ни с 10 (код Б). В то же время, обратное условие Фано не выполняется, потому что код буквы А (11) совпадает с окончанием кода буквы В (011).
Проверим вариант 1 — сократим код буквы Г до 00. При этом нарушилось условие Фано, которое обеспечивало однозначную декодируемость исходного варианта: теперь код буквы Г (00) совпадает с началом кода буквы Д (001). Но и обратное условие Фано тоже не выполняется для пары букв А-В. Поэтому можно предположить, что такой код не обладает свойством однозначной декодируемости. И действительно, легко находится цепочка 001011, которую можно раскодировать как ГБА (00 10 11) или ДВ (001 011).
Рассмотрим вариант 3 — сократим код буквы В до 01. При этом условие Фано выполняется, поскольку ни одно из кодовых слов не начинается с 01, то есть код является префиксным и однозначно раскодируется. Это и есть правильный ответ.
На всякий случай проверяем вариант 4 — сокращает код буквы Б до 1. При этом код перестает быть префиксным, и обратное условие Фано также не выполнено (код буквы Б совпадает с началом и концом кода буквы А). Сразу понятно, что последовательность 11 можно раскодировать как А или как ББ, поэтому этот вариант неверный.
Выводы
В заметке выполнен подробный анализ задачи на кодирование, которая предлагается на ЕГЭ в последние несколько лет. Нужно заметить, что в нём затрагивается вузовский курс дискретной математики. Понятно, что нельзя требовать от школьников знания теорем Ал.А. Маркова об однозначном декодировании, но учителю полезно более глубоко представлять себе эти вопросы, которые можно разбирать на факультативах. В качестве дополнительной литературы по этой теме можно рекомендовать 5.
С точки зрения практического подхода, для решения всех известных автору реальных задач подобного типа достаточно найти вариант, при котором выполняется условие Фано или обратное условие Фано (одно из двух!).
Литература
Комментарии: 16:
Спасибо, что «на пальцах» объяснили еще раз!
Действительно, спасибо. Очень понятно.
Просто великолепная статья!
Спасибо!
Уважаемый Константин! Бесконечно благодарна Вам за неоценимую помощь в подготовке детей к ЕГЭ по информатике.
Спасибо), всё понятно)))
Отличная статья! Спасибо!
Спасибо за статью. В учебнике информатики 10 класса Полякова содержится опечатка в последовательности построения графа Маркова, которая, при всей схожести текста, исправлена у вас. Порадовало также более ясное объяснение примеров.
> В учебнике информатики 10 класса Полякова содержится опечатка
Да, действительно была в первом издании. Сейчас исправлена.
Программа, скачанная отсюда, на codeTable = выдала следующий список вершин графа: [‘Lambda’, ‘0’, ‘1’].
Но разве ‘2’ не должна входит в список вершни, так как является началом ‘E’ и концом ‘C’ и не является кодовым словом?
> Но разве ‘2’ не должна входит в список вершин, так как является началом
> ‘E’ и концом ‘C’ и не является кодовым словом?
Программа предназначена только для обработки двоичных кодов.
А как можно доказать на пальцах, что из отсутствия данного граф-цикла следует однозначность декодируемости? А то зашел в учебник Маркова, а там просто жесть какая-то. Развитие моего ума не позволяет мне это изучить в разумные сроки.
Последний граф для кода А — 00, Б — 01, В — 100, Г — 101, Д — 10 составлен не совсем точно.
Нужно еще из вершины Λ в вершину 1 провести дугу Д → Г.
Подпишитесь на каналы Комментарии к сообщению [Atom]
Константин Поляков Санкт-Петербург
Что значит однозначное декодирование информатика
Тема: Кодирование и декодирование информации.
· кодирование – это перевод информации с одного языка на другой (запись в другой системе символов, в другом алфавите)
· обычно кодированием называют перевод информации с «человеческого» языка на формальный, например, в двоичный код, а декодированием – обратный переход
· один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия)
· кодирование может быть равномерное и неравномерное;
при равномерном кодировании все символы кодируются кодами равной длины;
при неравномерном кодировании разные символы могут кодироваться кодами разной длины, это затрудняет декодирование
· закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова;
· закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова;
· условие Фано – это достаточное, но не необходимое условие однозначного декодирования.
Пример задания:
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–00, Б–010, В–011, Г–101, Д–111. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.
1) для буквы Б – 01 2) это невозможно
3) для буквы В – 01 4) для буквы Г – 01
Решение (1 способ, проверка условий Фано):
1) для однозначного декодирования достаточно, чтобы выполнялось условие Фано или обратное условие Фано;
2) проверяем последовательно варианты 1, 3 и 4; если ни один из них не подойдет, придется выбрать вариант 2 («это невозможно»);
«прямое» условие Фано не выполняется (код буквы Б совпадает с началом кода буквы В);
«обратное» условие Фано не выполняется (код буквы Б совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит ;
«прямое» условие Фано не выполняется (код буквы В совпадает с началом кода буквы Б);
«обратное» условие Фано не выполняется (код буквы В совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит ;
«прямое» условие Фано не выполняется (код буквы Г совпадает с началом кодов букв Б и В); но «обратное» условие Фано выполняется (код буквы Г не совпадает с окончанием кодов остальных буквы); поэтому этот вариант подходит ;
Решение (2 способ, дерево):
1) построим двоичное дерево, в котором от каждого узла отходит две ветки, соответствующие выбору следующей цифры кода – 0 или 1; разместим на этом дереве буквы А, Б, В, Г и Д так, чтобы их код получался как последовательность чисел на рёбрах, составляющих путь от корня до данной буквы (красным цветом выделен код буквы В – 011):
2) здесь однозначность декодирования получается за счёт того, что при движении от корня к любой букве в середине пути не встречается других букв (выполняется условие Фано);
3) теперь проверим варианты ответа: предлагается перенести одну из букв, Б, В или Г, в узел с кодом 01, выделенный синим цветом
4) видим, что при переносе любой из этих букв нарушится условие Фано; например, при переносе буквы Б в синий узел она оказывается на пути от корня до В, и т.д.; это значит, что предлагаемые варианты не позволяют выполнить прямое условие Фано
5) хочется уже выбрать вариант 2 («это невозможно»), но у нас есть еще обратное условие Фано, для которого тоже можно построить аналогичное дерево, в котором движение от корня к букве дает её код с конца (красным цветом выделен код буквы В – 011, записанный с конца):
видно, что обратное условие Фано также выполняется, потому что на пути от корня к любой букве нет других букв
6) в заданных вариантах ответа предлагается переместить букву Б, В или Г в синий узел; понятно, что Б или В туда перемещать нельзя – перемещённая буква отказывается на пути от корня к букве Г; а вот букву Г переместить можно, при этом обратное условие Фано сохранится
Ещё пример задания:
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Использовали код:
А–1, Б–000, В–001, Г–011. Укажите, каким кодовым словом должна быть закодирована буква Д. Длина этого кодового слова должна быть наименьшей из всех возможных. Код должен удовлетворять свойству однозначного декодирования.
1) 00 2) 01 3)11 4) 010
8) заметим, что для известной части кода выполняется условие Фано – никакое кодовое слово не является началом другого кодового слова
9) если Д = 00, такая кодовая цепочка совпадает с началом Б = 000 и В = 001, невозможно однозначно раскодировать цепочку 000000: это может быть ДДД или ББ; поэтому первый вариант не подходит
10) если Д = 01, такая кодовая цепочка совпадает с началом Г = 011, невозможно однозначно раскодировать цепочку 011: это может быть ДА или Г; поэтому второй вариант тоже не подходит
11) если Д = 11, условие Фано тоже нарушено: кодовое слово А = 1 совпадает с началом кода буквы Д, невозможно однозначно раскодировать цепочку 111: это может быть ДА или ААА; третий вариант не подходит
12) для четвертого варианта, Д = 010, условие Фано не нарушено;
· условие Фано – это достаточное, но не необходимое условие однозначного декодирования, поэтому для уверенности полезно найти для всех «неправильных» вариантов контрпримеры: цепочки, для которых однозначное декодирование невозможно
Еще пример задания:
Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11, соответственно). Если таким способом закодировать последовательность символов БАВГ и записать результат шестнадцатеричным кодом, то получится
14) из условия коды букв такие: A – 00, Б –01, В – 10 и Г – 11, код равномерный
15) последовательность БАВГ кодируется так: 01 00 10 11 = 1001011
16) разобьем такую запись на тетрады справа налево и каждую тетраду переведем в шестнадцатеричную систему (то есть, сначала в десятичную, а потом заменим все числа от 10 до 15 на буквы A, B, C, D, E, F); получаем
1001011 = 0100 10112 = 4B 16
17) правильный ответ – 1.
· расчет на то, что при переводе тетрад в шестнадцатеричную систему можно забыть заменить большие числа (10–15) на буквы (10112 = 11, получаем неверный ответ 41116)
· может быть дан неверный ответ, в котором нужные цифры поменяли местами (расчет на невнимательность), например, B 416
· в ответах дана последовательность, напоминающая исходную (неверный ответ BACD 16), чтобы сбить случайное угадывание
Еще пример задания:
Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв – из двух бит, для некоторых – из трех). Эти коды представлены в таблице: