Что значит область определения функции симметрична относительно нуля

Четные и нечетные функции

Функция называется четной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График четной функции симметричен относительно оси ординат.

Например, — четные функции.

Что значит область определения функции симметрична относительно нуля

Функция называется нечетной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График нечетной функции симметричен относительно начала координат.

Например, — нечетные функции.

Что значит область определения функции симметрична относительно нуля

Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида.

Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задания:

1. Проверьте, является ли функция четной (нечетной).

Область определения функции

Проверим, является ли чётной или нечётной. Если функция четна. Если функция нечетна.

— значит, функция нечётная, её график симметричен относительно нуля.

2. Проверьте, является ли функция четной (нечетной)

Область определения: все действительные числа.

— чётная, как сумма двух чётных функций.

Её график симметричен относительно оси y.

3. Проверьте, является ли функция четной (нечетной).

Область определения функции симметрична относительно нуля.

— чётная, её график симметричен относительно оси y.

Источник

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №48. Функции. Свойства функций и их графики. Исследование функций.

Перечень вопросов, рассматриваемых в теме:

Глоссарий по теме урока

Зависимость переменной у от переменной х называется функцией, если каждому значению х соответствует единственное значение у.

х – независимая переменная, аргумент,

Множество значений аргумента функции называется областью определения функции и обозначается D(y).

Множество значений, которые принимает сама функция, называется множеством значений функции и обозначается Е(у).

Функция у = f(х) называется четной, если она обладает двумя свойствами:

Функция у = f(х) называется нечетной, если она обладает двумя свойствами:

для любого х из области определения выполняется равенство f(-х)=-f(х).

Значения аргумента, при которых значение функции равно 0, называются корнями (нулями) функции.

Функция у=f(x) возрастает на промежутке (а; в), если для любых х1, х2 из этого промежутка, таких, что х1 у2.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл.– М.: Просвещение, 2015. С. 98-118, 271-307.

Шахмейстер А.Х. Построение и преобразование графиков. Параметры. Ч.2-3. СПб.: Петроглиф; М.: МЦНМО, 2016. 392 с. С.73-307.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”.

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

1. Исследование функции и построение графика

Схема исследования функции на примере функции

Что значит область определения функции симметрична относительно нуля

1) Область определения функции

Знаменатель дроби не равен нулю:

Что значит область определения функции симметрична относительно нуля

Получили область определения

D(y)=Что значит область определения функции симметрична относительно нуля

Отыскание Е(у) можно свести к решению уравнения с параметром у. Все значения параметра у, при которых уравнение имеет хотя бы одно решение, и составят Е (у).

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Получили Что значит область определения функции симметрична относительно нуля

D(y)= Что значит область определения функции симметрична относительно нуля— симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля,

следовательно, функция четная и ее график симметричен относительно оси ОУ

Для нахождения нулей функции необходимо решить уравнение Что значит область определения функции симметрична относительно нуля

Уравнение не имеет действительных корней, значит, нулей у данной функции нет, ее график не пересекает ось ОХ

у>0 при Что значит область определения функции симметрична относительно нуля

у 2 у.е. Если на втором объекте работает t человек, то их суточная зарплата составляет t 2 у.е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у.е. в этом случае придется заплатить рабочим?

1 этап. Ведем переменную, выразим нужные компоненты, составим искомую функцию.

Пусть на 1 объект направлено х рабочих, суточная зарплата которых составит 4x 2 у.е.

Причем 0≤ x ≤ 24, x ϵ N.

3 этап. Перевод на язык задачи

Поскольку x ϵ N, подходящим будет ближайшее к вершине натуральное значение, x=5 (рабочих) – на 1 объекте.

24-5=19 (рабочих) – на 2 объекте.

Наименьшее значение f(5)=125+240-576=461 (у.е.) – наименьшая суточная выплата.

Примечание: исследовать функцию также можно было с помощью производной.

Ответ: 5 рабочих на 1 объекте, 19 – на втором, 461 у.е. – наименьшая суточная выплата.

Примеры и разбор решения заданий тренировочного модуля

1. Исследуйте функции на четность.

Что значит область определения функции симметрична относительно нуля

область определения – множество действительных чисел – симметрична относительно нуля

Данная функция одновременно четна и нечетна.

область определения – множество действительных чисел – симметрична относительно нуля

преобразуем функцию, применив формулы приведения: sin(x+5π/2)=cos x

у= cos x – четная функция, значит, исходная функция также четная

логарифмируемое выражение должно быть положительным

Найдем область определения D(f)

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Проверим второе условие

Что значит область определения функции симметрична относительно нуля

Полученное в результате подстановки –х в функцию выражение, очевидно, не равно f(x), не дает пока понимания о выполнении условия нечетности.

Что значит область определения функции симметрична относительно нуля

домножим на сопряженное

Что значит область определения функции симметрична относительно нуляЧто значит область определения функции симметрична относительно нуля

Теперь можем сделать вывод: f(-x)=-f(x), функция нечётная.

и четная, и нечетная

Что значит область определения функции симметрична относительно нуля

2. Что значит область определения функции симметрична относительно нуля

Используем функциональный подход при решении данной задачи. Представим каждое из уравнений как функции. Построим их графики. Единственное решение системы будем интерпретировать как единственную точку пересечения графиков функций первого и второго уравнений.

Второе уравнение проще, но содержит параметр. Перепишем его в явном виде для функции, выразив у: у=-х+а.

В таком виде понятно, что данное уравнение задает множество прямых, параллельных у=-х.

Источник

Что значит область определения функции симметрична относительно нуля

Функция

Что значит область определения функции симметрична относительно нуля

Область определения

Вершина параболы

Что значит область определения функции симметрична относительно нуля

Нули функции

Что значит область определения функции симметрична относительно нуля

Экстремумы

если a 0, то максимум в вершине

Область значений

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Четность

ни четная, ни нечетная

Функция

Что значит область определения функции симметрична относительно нуляЧто значит область определения функции симметрична относительно нуля

Область определения

Область значений

Четность

Нули функции

Экстремумы

х = 0 — точка минимума

Монотонность

возрастает при х ϵ R

при х ≤ 0 убывает
при х > 0 возрастает

Функция

Что значит область определения функции симметрична относительно нуляЧто значит область определения функции симметрична относительно нуля

Область определения

Область значений

Четность

Нули функции

Экстремумы

Монотонность

Функция

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Область определения

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Область значений

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Нули функции

Экстремумы

Монотонность

возрастает при х ϵ D(f)

возрастает при х ϵ D(f)

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Четность

Периодичность

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Экстремумы

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Монотонность

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Функция

Область определения

R кроме Что значит область определения функции симметрична относительно нуля

R кроме Что значит область определения функции симметрична относительно нуля

Источник

Параграф 2. Повторение и расширение сведений о функции.

Работу выполнил: Косярский А.А. студент группы 45.2

Пункт 2.1. Понятие числовой функции. Простейшие свойства числовых функций.

1. Понятие числовой функции

2. График функции

Что значит область определения функции симметрична относительно нуля
Графиком функции f называется множество всех точек координатной плоскости
с координатами (x; f (x)), где первая координата x
«пробегает» всю область определения функции, а вторая координата
равна соответствующему значению функции f в точке x

3. Возрастающие и убывающие функции

Что значит область определения функции симметрична относительно нуля
Функция f(x) возрастающая на множестве P:
если x2 > x1, то f(x2) > f(x1)
для любых x1 и x2, лежащих во множестве P
(при увеличении аргумента соотвествующие точки графика поднимаются)

Что значит область определения функции симметрична относительно нуля
Функция f(x) убывающая на множестве P:
если x2 > x1, то f(x2)

4. Чётные и нечётные функции

Что значит область определения функции симметрична относительно нуля

Функция f(x) чётная:
если f(-x) = f(x)
для любых x из области определения.
График чётной функции симметричен относительно Oy

Объяснение и обоснование

1. Понятие функции. С понятием функции вы ознакомились в курсе алгебры.
Напомним, что зависимость переменной y от переменной x называется функцией, если
каждому значению x соответствуе единственное значение y.
В курсе алгебры и начал математического анализа мы будем пользоваться
следующим определением числовой функции.

Числовой функцией с областью определения D называется зависимость,
при которой каждому числу x из множества D ставится в соответствие
единственное число y.

Функции обозначают латинскими (иногда греческими) буквами. Рассмотрим
произвольную функцию f. Число y, соответствующее числу x (на рисунке 9 это
показано стрелкой), называют значением функции f в точке x и обозначают f (x).

Чаще всего функцию задают с помощью какой-либо формулы. Если нет
дополнительных ограничений, то областью определения функции, заданной
формулой, считается множество всех значений переменной, при которых эта
формула имеет смысл.

Например, если функция задана формулой y = √x + 1, то её область
определения: x ≥ 0, то есть D(y) = [0;+∞), а область значений:
y ≥ 1, то есть E(y) = [1;+∞).

Функция может задаваться не только при помощи формул, но и сс помощью
таблицы, графика или словесного описания. Например, на рисунке 10
графически задана функция y = f(x) с областью определения
D(f) = [-1;3] и множеством значений E(f) = [1;4]

Что значит область определения функции симметрична относительно нуля

3. Возрастающие и убывающие функции. Важными характеристиками
функций являются их возрастание и убывание.

На рисунке 15 приведён график ещё одной возрастающей функции
y = x³. Действительно, при x2 > x1 имеем x2³ > x1³,
то есть f(x2) > f(x1).

Функция f(x) называется убывающей на множестве P, если
большему значению аргумента из этого множества соответствует
меньшее значение функции.

То есть для любых двух значений x1 и x2 из множества P, если
x2 > x1, то f(x2) x1 имеем
-2⋅

Что значит область определения функции симметрична относительно нуля

отметим, что для возрастающих и убывающих функций выполняются
свойства, обратные утверждениям, содержащимся в определении.

Например, если x² > 8, то есть x² > 2², то,
учитывая возрастание функции f(x) = x², получаем x > 2.

4. Чётные и нечётные функции. Рассмотрим функции, области
определения которых симметричны относительно начала координат, то
есть содержат вместе с каждым числом x и число (-x). Для таких
функций вводятся понятия чётности и нечётности.
Функция f называется чётной, если для любого x из её области определения
f(-x) = f(x).

Если функция f(x) чётная, то ее графику вместе с каждой точкой Что значит область определения функции симметрична относительно нуля
M с координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;f(x)). Точки M и M1
расположены симметрично относительно оси Oy (рис. 18), поэтому
и весь график чётной функции расположен симметрично относительно оси OY.

Если функци f(x) нечётная, то её графику вместе с каждой точкой M с Что значит область определения функции симметрична относительно нуля
координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;-f(x)). Точки M и M1
расположены симметрично относительно начала координат (рис. 19), поэтому
и весь график нечётной функции расположен симметрично относительно начала координат.

Например, график нечётной функции y = 1/x (см. пункт 4 табл. 2) симметричен относительно
начала координат, то есть точки O.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ:

ПРИМЕРЫ РЕШЕНИЯ ПРАКТИЧЕСКИХ ЗАДАНИЙ

УПРАЖНЕНИЯ К ПАРАГРАФУ

Что значит область определения функции симметрична относительно нуля

5. Обоснуйте, что заданная функция является возрастающей (на её области определения):
1) y = 3x 2) y = x + 5 3) y = x³ 4) y = x 5 5) y = √(x)

8. Докажите, что на заданном промежутке функция убывает:
1) y = 3/x, где x 0

9. Докажите, что функция y = x² на промежутке [0; + ∞) возрастает, а на промежутке (- ∞;0] убывает.

11. Используя утверждения, приведённые в примере 6:
1) Обоснуйте, что уравнение x³ + x = 10 имеет единственный корень x = 2;
2) Подберите корень уравнения √(x) + x = 6 и докажите, что других корней это уравнение не имеет.

12. Обоснуйте, что заданная функция является чётной:
1) y = x 6 2) y = 1/x² + 1 3) y = √ (x² + 1) 4) y = √ (|x| + x 4 )

Источник

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №48. Функции. Свойства функций и их графики. Исследование функций.

Перечень вопросов, рассматриваемых в теме:

Глоссарий по теме урока

Зависимость переменной у от переменной х называется функцией, если каждому значению х соответствует единственное значение у.

х – независимая переменная, аргумент,

Множество значений аргумента функции называется областью определения функции и обозначается D(y).

Множество значений, которые принимает сама функция, называется множеством значений функции и обозначается Е(у).

Функция у = f(х) называется четной, если она обладает двумя свойствами:

Функция у = f(х) называется нечетной, если она обладает двумя свойствами:

для любого х из области определения выполняется равенство f(-х)=-f(х).

Значения аргумента, при которых значение функции равно 0, называются корнями (нулями) функции.

Функция у=f(x) возрастает на промежутке (а; в), если для любых х1, х2 из этого промежутка, таких, что х1 у2.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл.– М.: Просвещение, 2015. С. 98-118, 271-307.

Шахмейстер А.Х. Построение и преобразование графиков. Параметры. Ч.2-3. СПб.: Петроглиф; М.: МЦНМО, 2016. 392 с. С.73-307.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”.

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

1. Исследование функции и построение графика

Схема исследования функции на примере функции

Что значит область определения функции симметрична относительно нуля

1) Область определения функции

Знаменатель дроби не равен нулю:

Что значит область определения функции симметрична относительно нуля

Получили область определения

D(y)=Что значит область определения функции симметрична относительно нуля

Отыскание Е(у) можно свести к решению уравнения с параметром у. Все значения параметра у, при которых уравнение имеет хотя бы одно решение, и составят Е (у).

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Получили Что значит область определения функции симметрична относительно нуля

D(y)= Что значит область определения функции симметрична относительно нуля— симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля,

следовательно, функция четная и ее график симметричен относительно оси ОУ

Для нахождения нулей функции необходимо решить уравнение Что значит область определения функции симметрична относительно нуля

Уравнение не имеет действительных корней, значит, нулей у данной функции нет, ее график не пересекает ось ОХ

у>0 при Что значит область определения функции симметрична относительно нуля

у 2 у.е. Если на втором объекте работает t человек, то их суточная зарплата составляет t 2 у.е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у.е. в этом случае придется заплатить рабочим?

1 этап. Ведем переменную, выразим нужные компоненты, составим искомую функцию.

Пусть на 1 объект направлено х рабочих, суточная зарплата которых составит 4x 2 у.е.

Причем 0≤ x ≤ 24, x ϵ N.

3 этап. Перевод на язык задачи

Поскольку x ϵ N, подходящим будет ближайшее к вершине натуральное значение, x=5 (рабочих) – на 1 объекте.

24-5=19 (рабочих) – на 2 объекте.

Наименьшее значение f(5)=125+240-576=461 (у.е.) – наименьшая суточная выплата.

Примечание: исследовать функцию также можно было с помощью производной.

Ответ: 5 рабочих на 1 объекте, 19 – на втором, 461 у.е. – наименьшая суточная выплата.

Примеры и разбор решения заданий тренировочного модуля

1. Исследуйте функции на четность.

Что значит область определения функции симметрична относительно нуля

область определения – множество действительных чисел – симметрична относительно нуля

Данная функция одновременно четна и нечетна.

область определения – множество действительных чисел – симметрична относительно нуля

преобразуем функцию, применив формулы приведения: sin(x+5π/2)=cos x

у= cos x – четная функция, значит, исходная функция также четная

логарифмируемое выражение должно быть положительным

Найдем область определения D(f)

Что значит область определения функции симметрична относительно нуля

Что значит область определения функции симметрична относительно нуля

Проверим второе условие

Что значит область определения функции симметрична относительно нуля

Полученное в результате подстановки –х в функцию выражение, очевидно, не равно f(x), не дает пока понимания о выполнении условия нечетности.

Что значит область определения функции симметрична относительно нуля

домножим на сопряженное

Что значит область определения функции симметрична относительно нуляЧто значит область определения функции симметрична относительно нуля

Теперь можем сделать вывод: f(-x)=-f(x), функция нечётная.

и четная, и нечетная

Что значит область определения функции симметрична относительно нуля

2. Что значит область определения функции симметрична относительно нуля

Используем функциональный подход при решении данной задачи. Представим каждое из уравнений как функции. Построим их графики. Единственное решение системы будем интерпретировать как единственную точку пересечения графиков функций первого и второго уравнений.

Второе уравнение проще, но содержит параметр. Перепишем его в явном виде для функции, выразив у: у=-х+а.

В таком виде понятно, что данное уравнение задает множество прямых, параллельных у=-х.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *