Что значит неинвазивная вентиляция легких при коронавирусе
Искусственная вентиляция легких (ИВЛ): инвазивная и неинвазивная респираторная поддержка
К искусственной вентиляции легких (ИВЛ) прибегают для оказания помощи пациентам с острой или хронической дыхательной недостаточностью, когда больной не может самостоятельно вдыхать необходимый для полноценного функционирования организма объем кислорода и выдыхать углекислый газ. Необходимость в ИВЛ возникает при отсутствии естественного дыхания или при его серьезных нарушениях, а также во время хирургических операций под общим наркозом.
Что такое ИВЛ?
Искусственная вентиляция в общем виде представляет собой вдувание газовой смеси в легкие пациента. Процедуру можно проводить вручную, обеспечивая пассивный вдох и выдох путем ритмичных сжиманий и разжиманий легких или с помощью реанимационного мешка типа Амбу. Более распространенной формой респираторной поддержки является аппаратная ИВЛ, при которой доставка кислорода в легкие осуществляется с помощью специального медицинского оборудования.
Показания к искусственной вентиляции легких
Искусственная вентиляция легких проводится при острой или хронической дыхательной недостаточности, вызванной следующими заболеваниями или состояниями:
Инвазивная вентиляция легких
Эндотрахеальная трубка вводится в трахею через рот или через нос и подсоединяется к аппарату ИВЛ
При инвазивной респираторной поддержке аппарат ИВЛ обеспечивает принудительную прокачку легких кислородом и полностью берет на себя функцию дыхания. Газовая смесь подается через эндотрахеальную трубку, помещенную в трахею через рот или нос. В особо критических случаях проводится трахеостомия – хирургическая операция по рассечению передней стенки трахеи для введения трахеостомической трубки непосредственно в ее просвет.
Инвазивная вентиляция обладает высокой эффективностью, но применяется лишь случае невозможности помочь больному более щадящим способом, т.е. без инвазивного вмешательства.
Кому и когда необходима инвазивная ИВЛ?
Подключенный к аппарату ИВЛ человек не может ни говорить, ни принимать пищу. Интубация доставляет не только неудобства, но и болезненные ощущения. Ввиду этого пациента, как правило, вводят в медикаментозную кому. Процедура проводится только в условиях стационара под наблюдением специалистов.
Инвазивная вентиляция легких отличается высокой эффективностью, однако интубация предполагает введение пациента в медикаментозную кому. Кроме того, процедура сопряжена с рисками.
Традиционно инвазивную респираторную поддержку применяют в следующих случаях:
Как работает аппарат инвазивной ИВЛ?
Принцип работы приборов для инвазивной ИВЛ можно описать следующим образом.
Особенности оборудования для инвазивной вентиляции
Оборудование для инвазивной вентиляции легких имеет ряд характерных особенностей.
Неинвазивная вентиляция легких
За последние два десятилетия заметно возросло использование оборудования неинвазивной искусственной вентиляции легких. НИВЛ стала общепризнанным и широко распространенным инструментом терапии острой и хронической дыхательной недостаточности как в лечебном учреждении, так и в домашних условиях.
Одним из ведущих производителей медицинских респираторных устройств является австралийская компания ResMed
НИВЛ — что это?
Неинвазивная вентиляция легких относится к искусственной респираторной поддержке без инвазивного доступа (т.е. без эндотрахеальной или трахеостомической трубки) с использованием различных известных вспомогательных режимов вентиляции.
Оборудование подает воздух в интерфейс пациента через дыхательный контур. Для обеспечения НИВЛ используются различные интерфейсы – носовая или рото-носовая маска, шлем, мундштук. В отличие от инвазивного метода, человек продолжает дышать самостоятельно, но получает аппаратную поддержку на вдохе.
Когда применяется неинвазивная вентиляция легких?
Ключом к успешному использованию неинвазивной вентиляции легких является признание ее возможностей и ограничений, а также тщательный отбор пациентов (уточнение диагноза и оценка состояния больного). Показаниями для НИВЛ являются следующие критерии:
Что значит неинвазивная вентиляция легких при коронавирусе
Неинвазивная вентиляция легких при COVID-19
Во время пандемии COVID-19 у примерно 5–6% пациентов отмечается тяжелая гипоксемия с необходимостью интенсивной терапии, а некоторым из этих пациентов требуется инвазивная или неинвазивная вентиляция легких. Причиной гипоксемической дыхательной недостаточности является или тяжелая пневмония, или развившееся вследствие этой пневмонии состояние, сходное с ОРДС. Тяжелая пневмония характеризуется лихорадкой или подозрением на инфекцию дыхательных путей и частотой дыхания более 30 в минуту, тяжелым диспноэ или сатурацией (SpO2) менее 90% при дыхании атмосферным воздухом. Диагноз ОРДС ставится на основании действующих в текущий момент клинических руководств или рекомендации с соответствующей градацией по степени тяжести: ОРДС легкой, умеренной и тяжелой степени в зависимости от отношения парциального давления кислорода в артериальной крови к фракции кислорода вдыхаемого воздуха. В данной статье мы рассмотрим возможности и ограничения неинвазивной вентиляции легких (НИВЛ) при острой дыхательной недостаточности.
Причиной тяжелой дыхательной недостаточности при ОРДС традиционно принято считать нарушение вентиляционно-перфузионных отношений или внутрилегочный шунт. Более новые данные в отношении ОРДС, вызванного COVID-19, говорят о том, что патофизиологические изменения, лежащие в основе ОРДС, могут быть весьма разнообразными. В частности, у этих пациентов может наблюдаться не классический ОРДС, а так называемый атипичный ОРДС. Атипичный ОРДС характеризуется нарушением механизмов перфузии и снижением гипоксической вазоконстрикции на фоне сохраненной легочной механики.
У пациентов с COVID-19 динамика развития заболевания от возникновения первых респираторных симптомов до ОРДС и до интубации может быть очень быстрой и занимать всего несколько дней, поэтому может потребоваться принять быстрое решение в отношении проведения вентиляции легких. При наличии у пациента гипоксемии или дыхательной недостаточности первоначально на первый план выходят такие возможности терапии, как подача кислорода через носовые канюли, или маску Вентури и высокопоточная назальная оксигенотерапия. При ухудшении газообмена и повышении кислородозависимости в динамике следует рассмотреть наличие показаний для CPAP-терапии или ИВЛ. Наряду с определением показаний следует определить не только форму ИВЛ (будь то инвазивная или неинвазивная вентиляция легких), но и момент времени перевода на ИВЛ.
НИВЛ может способствовать благоприятному исходу при ее применении у пациентов с классическим ОРДС только в том случае, если с ее помощью удается обеспечить протективную вентиляцию легких с соответствующим высоким уровнем PEEP. У пациентов с гипоксемической дыхательной недостаточностью и недостаточной эффективностью применения чистого кислорода или же при легкой форме ОРДС, а также при гиперкапнической дыхательной недостаточности (например, при сопутствующем заболевании сердца, ХОБЛ, гипервентиляции, вызванной ожирением, нейромышечном заболевании) следует предпринять попытку лечения с применением НИВЛ или же с применением CPAP-терапии на первом этапе и затем переходом на НИВЛ. При этом порог интубации должен быть низким, и при ухудшении состояния (повышение кислородозависимости, резко или постоянно снижающийся показатель сатурации артериальной крови и/или частоты дыхания и усиление работы дыхания), следует незамедлительно выполнить интубацию и начать механическую ИВЛ. Таким образом, НИВЛ может применяться у отдельных пациентов на ранних этапах и с легкой формой острой гипоксемической дыхательной недостаточности. В то же время накапливается все больше данных, что у пациентов, у которых не наступило улучшение на раннем этапе, НИВЛ лишь откладывает проведение интубации, а не помогает ее избежать.
Как НИВЛ, так и высокопоточная назальная оксигенотерапия, которая проводится с интервалами (в зависимости от применяемых настроек и при увеличении показателей потока) сопровождается повышенным образованием аэрозоля, что в случае COVID-19 приводит к потенциальному риску контаминации вирусом. Поэтому обеспечению защиты персонала от инфекции следует уделить особое внимание. По этой же причине следует своевременно определять неэффективность неинвазивной ИВЛ, а затем правильно готовить и выполнять интубацию пациента. Это позволяет избежать экстренной интубации, которая не только сопряжена с менее благоприятным исходом для пациента, но и вследствие увеличения времени реакции и недостаточных мер предосторожности ведет к повышенному опасности для бригады за счет увеличения вирусной нагрузки. Ввиду тех же причин, при проведении инвазивной ИВЛ утечки воздуха следует свести к минимуму. Следует применять рото-носовые и полнолицевые кислородные маски, а также шлемы для кислородотерапии и отдавать предпочтение аппаратам с реверсивным контуром. При применении аппаратов ИВЛ с нереверсивным контуром между маской и клапаном сброса (или клапаном выдоха) следует установить вирусный фильтр.
Что значит неинвазивная вентиляция легких при коронавирусе
Проблема поражения легких при вирусной инфекции, вызванной COVID-19 является вызовом для всего медицинского сообщества, и особенно для врачей анестезиологов-реаниматологов. Связано это с тем, что больные, нуждающиеся в реанимационной помощи, по поводу развивающейся дыхательной недостаточности обладают целым рядом специфических особенностей. Больные, поступающие в ОРИТ с тяжелой дыхательной недостаточностью, как правило, старше 65 лет, страдают сопутствующей соматической патологией (диабет, ишемическая болезнь сердца, цереброваскулярная болезнь, неврологическая патология, гипертоническая болезнь, онкологические заболевания, гематологические заболевания, хронические вирусные заболевания, нарушения в системе свертывания крови). Все эти факторы говорят о том, что больные поступающие в отделение реанимации по показаниям относятся к категории тяжелых или крайне тяжелых пациентов. Фактически такие пациенты имеют ОРДС от легкой степени тяжести до тяжелой.
В терапии классического ОРДС принято использовать ступенчатый подход к выбору респираторной терапии. Простая схема выглядит следующим образом: низкопоточная кислородотерапия – высокопоточная кислородотерапия или НИМВЛ – инвазивная ИВЛ. Выбор того или иного метода респираторной терапии основан на степени тяжести ОРДС. Существует много утвержденных шкал для оценки тяжести ОРДС. На наш взгляд в клинической практике можно считать удобной и применимой «Берлинскую дефиницую ОРДС».
Общемировая практика свидетельствует о крайне большом проценте летальных исходов связанных с вирусной инфекцией вызванной COVID-19 при использовании инвазивной ИВЛ (до 85-90%). На наш взгляд данный факт связан не с самим методом искусственной вентиляции легких, а с крайне тяжелым состоянием пациентов и особенностями течения заболевания COVID-19.
Тяжесть пациентов, которым проводится инвазивная ИВЛ обусловлена большим объемом поражения легочной ткани (как правило более 75%), а также возникающей суперинфекцией при проведении длительной искусственной вентиляции.
Собственный опыт показывает, что процесс репарации легочной ткани при COVID происходит к 10-14 дню заболевания. С этим связана необходимость длительной искусственной вентиляции легких. В анестезиологии-реаниматологии одним из критериев перевода на спонтанное дыхание и экстубации служит стойкое сохранение индекса оксигенации более 200 мм рт. ст. при условии, что используются невысокие значения ПДКВ (не более 5-6 см. вод. ст.), низкие значения поддерживающего инспираторного давления (не более 15 см. вод. ст.), сохраняются стабильные показатели податливости легочной ткани (статический комплайнс более 50 мл/мбар), имеется достаточное инспираторное усилие пациента ( p 0.1 более 2.)
Достижение адекватных параметров газообмена, легочной механики и адекватного спонтанного дыхания является сложной задачей, при условии ограниченной дыхательной поверхности легких.
При этом задача поддержания адекватных параметров вентиляции усугубляется присоединением вторичной бактериальной инфекции легких, что увеличивает объем поражения легочной ткани. Известно, что при проведении инвазинвой ИВЛ более 2 суток возникает крайне высокий риск возникновения нозокомиальной пневмонии. Кроме того, у больных с COVID и «цитокиновым штормом» применяются ингибиторы интерлейкина, которые являются выраженными иммунодепрессантами, что в несколько раз увеличивает риск возникновения вторичной бактериальной пневмонии.
В условиях субтотального или тотального поражения дыхательной поверхности легких процент успеха терапии дыхательной недостаточности является крайне низким.
Собственный опыт показывает, что выживаемость пациентов на инвазивной ИВЛ составляет 15.3 % на текущий момент времени.
Алгоритм безопасности и успешности ИВЛ включает:
В связи с тем, что процент выживаемости пациентов при использовании инвазивной ИВЛ остается крайне низким возрастает интерес к использованию неинвазивной искусственной вентиляции легких. Неинвазивную ИВЛ по современным представлениям целесообразно использовать при ОРДС легкой степени тяжести. В условиях пандемии и дефицита реанимационных коек процент пациентов с тяжелой формой ОРДС преобладает над легкой формой.
Тем не менее, в нашей клинической практике у 23% пациентов ОРИТ в качестве стартовой терапии ДН и ОРДС применялась неинвазивная масочная вентиляция (НИМВЛ). К применению НИМВЛ есть ряд ограничений: больной должен быть в ясном сознании, должен сотрудничать с персоналом. Допустимо использовать легкую седацию с целью обеспечения максимального комфорта пациента.
Критериями неэффективности НИМВЛ являются сохранение индекса оксигенации ниже 100 мм рт.ст., отсутствие герметичности дыхательного контура, возбуждение и дезориентация пациента, невозможность синхронизации пациента с респиратором, травмы головы и шеи, отсутствие сознания, отсутствие собственного дыхания. ЧДД более 35/мин.
В нашей практике успешность НИМВЛ составила 11.1 %. Зав. ОАИР: к.м.н. Груздев К.А.
Что значит неинвазивная вентиляция легких при коронавирусе
В настоящее время, с учетом накопленного определенного опыта ведения пациентов с коронавирусной инфекцией, считается, что интубация трахеи и инвазивная вентиляция легких должны использоваться только в том случае, когда менее инвазивные методики лечения дыхательной недостаточности показали свою неэффективность. Нужно иметь в виду, что в условиях пандемии и массового поступления пациентов во многих учреждениях с ограниченными ресурсами обеспечение качества искусственной вентиляции легких станет сложной задачей. Это связано не только с малым количеством коек в отделениях интенсивной терапии, оснащенных дыхательными аппаратами, но также с проблемами, связанными с инфраструктурой, техобслуживанием оборудования, человеческими ресурсами и обучением. Примеры проблем: частая необходимость повторного использования одноразовых компонентов, плохой доступ к расходным материалам, включая тепло- и влагообменники, аспирационные катетеры, плохой доступ к запасным частям дыхательных аппаратов и так далее.
В настоящее время нет достаточной информации о наиболее подходящем времени для интубации гипоксических пациентов с тяжелым COVID-19, это также будет зависеть от местного потенциала для искусственной вентиляции легких. Считается, что у значительной части относительно молодых пациентов, гипоксемия (даже при сатурации менее 88%) достаточно хорошо переносится и не сопровождается тяжелым расстройством дыхания или истощением. Показания к интубации не должны основываться только на одной гипоксии, а скорее базироваться на расстройстве дыхания и общем состоянии пациента. Во время интубации могут генерироваться содержащие вирус аэрозоли, поэтому персонал должен использовать респираторы типа N95, FFP2, FFP3 или другие эквивалентного качества и принимать дополнительные меры предосторожности для снижения риска заражения. Интубацию предпочтительно выполнять с использованием ручного видеоларингоскопа, так как это позволяет увеличить расстояние между ртом пациента и лицом проводящего интубацию доктора. Однако в условиях с ограниченными ресурсами, как правило, видеоларингоскопия не будет доступна.
Инвазивная вентиляция легких может спасти жизни пациентам с тяжелым расстройством дыхания. Однако, на фоне тяжелого поражения легких, она также может усугубить или даже вызвать повреждение легких, включая баротравму, волюмотравму, ателектравму, биотравму и окситравму. В последние годы все меньше внимания уделяется применению более высоких PEEP для предотвращения ателектравмы. Искусственная вентиляция легких у пациентов с критическим COVID-19 отличается по некоторым важным аспектам от пациентов с другими причинами острого респираторного дистресс- синдрома (ОРДС). Важным отличием в легких, пораженных COVID-19, является сосуществование сильно пораженных участков легких, прилегающих к относительно незатронутым участкам. Пораженные участки с ателектазом не открываются или очень трудно открываются с помощью процедур открытия объема легких и использования более высокого PEEP. Непораженные участки остаются сохранными и, таким образом, подвержены риску перерастяжения из-за более высоких уровней PEEP. Таким образом, у этих пациентов стратегии предотвращения ателектравмы с применением более высоких уровней PEEP могут ухудшить состояние. Это аналогично предложенным индивидуальным стратегиями искусственной вентиляции легких в соответствии с фенотипами ОРДС, которые неоднократно описывались. Искусственная вентиляция легких должна быть направлена на предотвращение повреждений, вызванных респиратором, путем защиты неповрежденной ткани легкого.
Следуя этим принципам, рядом авторов предлагается ряд практических стратегий по искусственной вентиляции легких. Эти предложения могут измениться, когда со временем появятся больше данных об искусственной вентиляции легких пациентов с COVID-19. Рекомендуется применять стратегию малых дыхательных объемов с ограничением дыхательного объема до 6 мл/кг по идеальной массе тела. Также рекомендуется использовать невысокое PEEP — не более 10 см водного столба и быть осторожным при применении более высокого PEEP. Кроме этого, важным моментом является контроль давления на вдохе. Самый простой способ достижения более низкого инспираторного давления — это ограничение дыхательных объемов. Адекватное титрование PEEP также может оказать благотворный эффект на давление на вдохе. Следует еще раз подчеркнуть, что это предварительные рекомендации и они могут измениться по мере накопления информации о коронавирусной инфекции и методах ее лечения.
Очень важным моментом в обеспечении адекватной респираторной поддержки пациентов с коронавирусной инфекцией является использование положения пациента на животе (прон-позиции). Положение лежа на животе может улучшить оксигенацию пациента и поэтому нашло широкое применение у пациентов с коронавирусной инфекцией.
Что значит неинвазивная вентиляция легких при коронавирусе
Строение вируса SARS-CoV2. Шиповидный белок (S) способствует связыванию с трансмембранным рецептором ACE2 хозяина; белок оболочки (E) вместе с мембранным белком создает вирусную оболочку и определяет ее форму; белок гемагглютининовой эстеразы (HE) не исключено, что также задействован в механизме проникновения новых вирусов CoVs в клетку; нуклеокапсидный (N) белок связывается с геномной РНК вируса, образуя нуклеокапсид
COVID-19 — несегментированный РНК-вирус. COVID-19 относится к семейству коронавирусов, которое включает четыре повсеместно распространенных коронавируса, вызывающих обычную «простуду» (но у пациентов с сопутствующими неинфекционными заболеваниями может развиться вирусная пневмония).
SARS и MERS в свое время стали причинами эпидемий с высоким уровнем смертности, которые в некоторой степени имели сходство с COVID-19. COVID-19 в большей степени схож с SARS.
Вирус связывается с рецепторами ангиотензин превращающего фермента 2 типа (АПФ2), которые локализуются на альвеолярных клетках 2 типа и эпителиальных клетках кишечника (Hamming 2004).
SARS тропен к этим же рецепторам (отсюда и одно из названий COVID-19 — «SARS-CoV-2»).
Моноциты и макрофаги в воспалительном ответе. Неинфицированные моноциты/макрофаги из кровотока проникают в легкие, где они распознают вирионы и/или ядерно-цитоплазматические компоненты. С иммунными комплексами эти частицы попадают в клетку (a), где они презентируются TLRs, активизируя NFκB и/или IRF-зависимые пути воспаления (b,c). В результате неинфицированные моноциты/макрофаги выделяют значительное количество провоспалительных цитокинов (d,e), которые рекрутируют дополнительные клетки врожденного и адаптивного иммуннитета и вызывают дополнительное повреждение тканей
В эпидемиологии вирус носит название «SARS-CoV-2», а заболевание — «COVID-19».
Наблюдается непосредственный вирусный цитопатический эффект с поражением пневмоцитов, а не избыточную воспалительную реакцию; (Xu et al. 2/17). Осложненное течение сопрвождается:
1) ОРДС. В основе патофизиологических механизмов ОРДС лежит диффузное повреждение альвеол.
2) Цитокиновый шторм, который обычно развивается при бактериальном сепсисе или гемофагоцитарном лимфогистиоцитозе).
Передача от человека к человеку происходит капельным путем
Передача воздушным путем
Идеальным вариантом являются помещения с отрицательным давлением. Но при их отсутствии могут использоваться фильтры НЕРА в контуре аппарат-пациент.
Передача контактным путем (от прикосновений к лицу)
Этот путь передачи может оказаться невероятно важным:
(1) Инфицированный кашляет и распространяет крупные капли, содержащие вирусы. Капли оседают на поверхностях в комнате, создавая тонкую пленку. Вирус также может попадать во внешнюю среду с назальным секретом.
(2) Вирус сохраняется в окружающей среде. В зависимости от типа поверхности он может сохраняться на ней до четырех суток (Doremalen et al. 3/17/19).
(3) Кто-то другой через несколько дней касается зараженной поверхности, и вирус оказывается на его коже.
(4) Если он касается руками слизистых (глаза, нос или губы), это может стать причиной инфицирования.
Любое мероприятие по ограничению распространения вируса должно быть направлено на предупреждение контактного пути передачи. Указанная выше цепь событий может быть прервана следующими способами:
Когда может произойти передача?
Мембрана CD4+ Т-клетки
Клинические проявления COVID-19 варьируют в широких пределах, от бессимптомной инфекции до острой дыхательной недостаточности и смерти. Очевидно, в значительной мере это связано с особенностями иммунного ответа у пациента. Сейчас много внимания уделяют гуморальному иммунитету — появлению в крови антител (иммуноглобулинов IgG и IgM) к вирусным белкам; антитела вырабатывают B-лимфоциты. Однако существует также клеточный иммунитет, за который отвечают Т-лимфоциты. Суть его в следующем: патоген поедают клетки-макрофаги, фрагменты белков патогена экспонируют на своей мембране в комплексе с белками главного комплекса гистосовместимости (MHC). Фрагменты-антигены распознают Т-клетки с помощью Т-клеточных рецепторов (TCR) — эти рецепторы, как и антитела, относятся к иммуноглобулинам и специфично связываются с антигенами. У Т-хелперов в этом взаимодействии участвует также корецептор CD4, у Т-киллеров CD8. Основная задача Т-хелперов — усиление адаптивного иммунного ответа. Соответственно, присутствие в крови Т-лимфоцитов с рецептором CD4 (CD4+ клеток) и TCR, подходящим к антигену SARS-CoV-2, может способствовать развитию иммунного ответа при COVID-19. Для SARS-CoV 2002/03 (атипичной пневмонии) ответы CD4+ T-клеток на белок S коронавируса, как правило, связаны с положительными исходами.
Шейн Кротти из Отдела по открытию вакцин в Институте иммунологии Ла-Хойя, один из ведущих авторов работы, опубликованной в Cell, отмечает, что противовирусная вакцина, чтобы вызывать продукцию антител, должна стимулировать Т-хелперы. «Это воодушевляет, что мы наблюдаем эти результаты важны для разработчиков вакцин еще в одном отношении, говорит молекулярный вирусолог Рэйчел Грэм из Университета Северной Каролины в Чапел-Хилл. Большинство вакцин вызывают иммунный ответ против S-белка, но группа из Ла-Хойя показала, что Т-клетки реагируют на несколько вирусных белков. Возможно, вакцины, которые воздействуют на иммунную систему с помощью этих белков, окажутся более эффективными. «Важно не концентрироваться на единственном белке»,-пишит Грэм.
В начале августа в Росси вышел первый в мире паталогоанатомический атлас COVID-19. На основании данных аутопсии 2000 умерших сделаны следующие выводы:
Персистирующий воспалительный статус у пациентов с тяжелой и критической степенью тяжести COVID-19 действует как важный триггер для каскада коагуляции, в частности IL-6, может активировать систему свертывания и подавлять фибринолитическую систему. Нельзя исключить, что вследствие прямого воздействия вируса происходит повреждение эндотелия сосудов легких и периферических сосудов, что также является важным индуктором гиперкоагуляции, как и агрессивный иммунный ответ. Появление антифосфолипидных антител может усиливать коагулопатию.
Такое явление у пациентов с тяжелыми и критическими состояниями редко встречалось при других коронавирусных инфекциях или гриппе типа А. Клиническое течение COVID-19 характеризуется гиперкоагуляцией с удлинением протромбинового времени, повышением уровня D-димера и фибриногена в сыворотке крови, при почти нормальном активированном частичном тромбоплатиновом времени, что приводит к тромбозам разной локализации, тромбоэмболиям и развитию синдрома диссеминированного внутрисосудистого свертывания (ДВС-синдрома).
Прогрессирование COVID-19 также связывают с постоянным снижением доли лимфоцитов и значительным повышением числа нейтрофилов в крови. Помимо этого в сыворотке крови повышаются уровни маркеров воспаления: С-реактивного белка, ферритина, интерлейкина (IL-6, IP-10, MCP1, MIP1A и TNFα). Было показано, что снижение числа лимфоцитов, повышение уровня ферритина, IL-6 и D-димера являются неблагоприятными прогностическими факторами COVID-19. Обсуждается роль нетоза нейтрофилов (одного из недавно открытых видов их генетически запрограммированной гибели) в патогенезе ДВС-синдрома. Механизмы, лежащие в основе прогрессирующей лимфопении у тяжелых и критических пациентов с COVID-19, остаются неясными. Очевидно, что это может быть связано не только с функциональным истощением лимфоцитов и/или гибелью части лимфоцитов посредством апоптоза или пироптоза, а также патологического фагоцитоза собственными макрофагами. Несомненна роль гиперэргической иммунной реакции на SARS-CoV-2 у части больных, что обусловливает бурное развитие иммунной воспалительной реакции, выраженного синдрома системной воспалительной реакции, с тяжелой альтерацией ткани легких в виде диффузного альвеолярного повреждения, а также сосудистого русла, других органов, с развитием картины септического шока. Полагают, что ведущую роль в этом играют CD4+ Т-лимфоциты и различные провоспалительные цитокины («цитокиновый шторм»). Не исключается также роль вирус-индуцированных аутоиммунных реакций.
Обсуждается возможность развития генерализованных форм течения SARS-CoV-2, вирусного сепсиса и поражения различных органов, включая ЦНС.
Частота смертельных осложнений (непосредственных причин смерти, в %) у умерших от COVID-19 в г. Москве с 20 марта по 22 мая 2020 г. (n = 2000).
Исследование показало, что основным морфологическим проявлением в легких является диффузное альвеолярное повреждение (ДАП) в сочетании с вовлечением в патологический процесс сосудистого русла легких и альвеолярно-геморрагическим синдромом. Термин вирусной (интерстициальной) пневмонии, широко используемый в клинике, по сути своей отражает именно развитие ДАП, а при COVID-19 должен подразумевать еще и патологию сосудов легких, прежде всего микроциркуляторного русла, – микроангиопатию с тромбозом (редко – деструктивно-продуктивный тромбоваскулит). В свою очередь тяжелое диффузное альвеолярное повреждение является синонимом клинического понятия «острый респираторный дистресс-синдром» (ОРДС). На аутопсии легкие увеличены в объеме и массе, причем у части больных поражены преимущественно задне-базальные отделы (встречается примерно в трети летальных исходов), а на вскрытии в их передних отделах наблюдается острое вздутие (ткань легких повышенной воздушности, розового цвета, режется с хрустом). Изменения легких макроскопически соответствовали понятию «шоковое легкое». Ткань легких диффузно уплотнена и практически безвоздушна, с поверхности характерного «лакового» вида, на разрезе темно-вишневого или красно-бурого цвета, с участками ателектазов (дистелектазов), часто обширными сливными кровоизлияниями и нередко – различной величины геморрагическими инфарктами. Также характерны множественные пристеночные и обтурирующие тромбы ветвей легочных артерий и вен разного калибра, причем в отдельных случаях тромбоз легочных артерий распространялся на правые отделы сердца – желудочек и даже предсердие.
Тромбы ветвей легочной артерии следует дифференцировать с тромбоэмболами, которые также были выявлены в части наблюдений, а их источником явились глубокие вены нижних конечностей, вены малого таза, реже – правые отделы сердца. На плевре у части умерших были обнаружены характерные наложения фибрина (очаговый и распространенный фибринозный плеврит обычно без значительного выпота в плевральных полостях), причем не только при геморрагических инфарктах. При присоединении бактериальной суперинфекции развивается фибринозно-гнойный плеврит.
Гистологически изменения легких соответствуют двум фазам ДАП.
Для экссудативной (первой, ранней) фазы ДАП (первые 7–8 суток, реже – до 14-х суток от начала заболевания) характерны следующие изменения:
Рис. Диффузное альвеолярное повреждение, экссудативная фаза. Десквамированный альвеолярный эпителий в виде пластов, лимфоциты и макрофаги в просветах альвеол. Острое полнокровие сосудов микроциркуляторного русла. Окраска гематоксилином и эозином, х 120.
В экссудативную и пролиферативную фазы ДАП обнаружен ранее не описанный при поражении другими коронавирусами феномен аутоцитофагии: в просветах альвеол в части наблюдений выявлялись макрофаги, содержащие в своей цитоплазме фрагменты различных клеток, более вероятно – лимфоцитов (апоптотические тельца), а также эритроцитов. Этот феномен имеет сходство с изменениями при вторичном гемофагоцитарном лимфогистиоцитозе, обусловленном вирусной инфекцией. Аналогичные изменения обнаруживаются в лимфоидной ткани.
Рис. Тромбоэмбол смешанного строения в легочной артерии. Окраска гематоксилином и эозином, х 60.
Пролиферативная (вторая, поздняя) фаза ДАП (после 7–8 суток и более от начала болезни) характеризовалась следующими изменениями:
Рис.Диффузное альвеолярное повреждение, пролиферативная фаза. Миксоидный отек периваскулярной стромы и межальвеолярных перегородок. Окраска гематоксилином и эозином, х 60.
В 37 % наблюдений выявлена, наряду с признаками вирусной пневмонии (причем как в экссудативную, так и пролиферативную фазы ДАП), бактериальная очаговая, сливная или долевая пневмония.
Помимо изменений легких, разной степени выраженности, на аутопсиях были выявлены разнообразные поражения других органов и систем, патогенез которых пока не ясен, но, вероятно, носит сложный многофакторный характер. Среди таких основных факторов – специфическое вирусное повреждение, гипоксия, микроангиопатия, гиперкоагуляция и гиперэргическая иммунная реакция (возможно, и аутоиммунная), а также ятрогенное лекарственное повреждение. Кроме того, различные морфологические изменения связаны с коморбидными заболеваниями и их осложнениями, что характерно для COVID-19, летальные исходы от которого в подавляющем большинстве наблюдаются у больных старших возрастных групп.
Согласно всем существующим мировым рекомендациям при лечении больных с дыхательной недостаточностью при COVID-19 может использоваться:
1.Высокопоточная оксигенотерапия (HFNC);
НВЛ показана при:
— тахипноэ (более 25 движений в минуту для взрослых),если не исчезает после снижения температуры тела;
Для пациентов с умеренным и тяжелым острым респираторным дистресс-синдромом рекомендуется положение лежа на животе в течение 12-16 часов в день.
Положение лёжа на боку рекомендуется для беременных женщин.
Согласно методическим рекомендациям Минздрава РФ 7 версии-
Рекомендован пошаговый подход в респираторной терапии:
Нарастание рО2 усиливает альвеолокапиллярную диффузию О2 и СО2. Повышенное выведение эндогенного диоксида углерода из альвеол приводит к рефлекторному угнетению инспираторной зоны дыхательного центра и каротидных хеморецепторов. В силу более высокой диффузионной способности гелия он быстрее проникает по альвеолярным коллатералям в плохо вентилируемые пространства легких и из-за малой растворимости в крови остается в них, препятствуя развитию ателектазов. Кроме того, отмечено улучшение транспорта кислорода к альвеоло-капиллярной мембране.
Терапия экзогенным оксидом азота (NO-терапия) – метод лечебного применения экзогенного газообразного оксида азота [33,34]. Молекула оксида азота, является короткоживущим соединением, (срок жизни молекулы составляет примерно 10 сек). В организме человека оксид азота синтезируется в результате расщепления L-аргинина ферментом NO-синтазой (NOS) в эндотелиальных и нервных клетках, в макрофагах.
Газообразный оксид азота, воздействуя на патологически измененные участки кожных покровов пациента, вызывает гибель микроорганизмов, активацию протеолитических ферментов макрофагов, усиливает синтез в макрофагах и моноцитах эндогенного NO, тем самым повышает их микробную биоцидность. В результате воздействия экзогенного газообразного оксида азота происходит стимуляция микроциркуляторного кровообращения и системы капиллярного кровотока в области трофических нарушений.
Под воздействием экзогенного газообразного оксида азота увеличивается количество синтезируемого в эндотелиальных клетках NО, являющегося вазодилятатором и антиагрегантом тромбоцитов и эритроцитов и ингибитором тромбообразования. Усиливающийся синтез NO в клетках нервной системы выступает в качестве медиатора межнейронных коммуникаций, синаптической пластичности и памяти, а также медиатора, обуславливающего релаксацию гладкомышечных клеток.
Вдыхание оксида азота приводит к снижению тонуса гладкой мускулатуры бронхов, активации клеточного фагоцитоза и иммунитета, вызывает активацию апоптоза аномальных и стареющих клеток мерцательного эпителия и торможение активности ферментов антиоксидантной системы, что приводит к активации системы перекисного окисления липидов (ПОЛ).
Таким образом, метод обладает иммуностимулирующим, репаративно-регенеративным и противовоспалительным лечебными эффектами [34].
Критерием эффективности медицинской реабилитации таких пациентов является восстановление функции внешнего дыхания, психо-эмоционального и иммунного статуса пациентов.