Что значит найти значение выражения в математике 3 класс

Числовые и буквенные выражения. Порядок действий.

теория по математике 📈 алгебраические выражения

Числовое выражение – это выражение, состоящее из чисел и знаков действий, а также скобок.

Пример №1. В каждом из этих выражений содержатся числа, между которыми есть знаки действий, а также бывают скобки. Это и есть числовые выражения.

Если выполнить по порядку все действия, которые есть в числовом выражении, то получится определенное число, которое называют значением числового выражения. Порядок действий в числовых выражениях определяется правилами.

Действия сложение и вычитание принято называть действиями первой ступени, а умножение и деление – действиями второй ступени. Возведение в степень – это действие третьей ступени.

Порядок действий в выражении, не содержащем скобки

890 – 567 + 2340 – 124

в данном выражении действия одной ступени (сложение и вычитание), поэтому выполняем их по порядку слева направо:

в этом выражении также действия одной ступени (умножение и деление), поэтому выполняем их по порядку слева направо:

здесь присутствуют действия всех ступеней. Поэтому начинаем выполнять их с наивысшей ступени – возведения в степень. Затем слева направо выполняем деление и умножение, а затем слева направо – сложение и вычитание:

Порядок действий в выражении, содержащем скобки

Если числовое выражение содержит скобки, то выполняют сначала действия в скобках, следуя правилу, а затем – действия за скобками.

(3245 + 67,92:2)×3 + (126×2 – 321:3) – 125

здесь числовое выражение содержит скобки, поэтому действия выполняем в скобках слева (деление, затем сложение), затем в скобках справа (умножение, деление, вычитание):

Теперь выполняем действия за скобками слева направо (умножение, сложение, вычитание):

Буквенные выражения. Числовое значение буквенного выражения.

Выражения, содержащие не только числа и знаки действий, но и буквы, называют буквенными. Буквы также можно называть «переменная». Обращаем внимание на то, что знак «умножить» между числом и буквой не пишется.

Пример №6. Примеры буквенных выражений:

Числовое значение буквенного выражения – это значение числового выражения, полученного при подстановке конкретных значений переменной в данное выражение.

Пример №7. Найдем значение выражения с + х при с=23, х=0,17. Для этого подставим вместо с и х их данные числовые значения и получим числовое выражение 23 + 0,17. Теперь вычислим результат и получим 23,17. Таким образом, числовое значение буквенного выражения с + х равно 23,17.

Пример №8. Н айдем значение выражения 11х +(сd) при х=10, c=178, d=121. Для этого подставляем вместо каждой переменной соответствующие числовые значения и получим числовое выражение 11×10 + (178 – 121). Выполнив действия, получим ответ 167. Это и есть числовое значение буквенного выражения.

Заметим, что и числовые и буквенные выражения можно называть еще как алгебраические выражения.

В данном случае необходимо сначала упростить выражение, для этого раскроем скобки:

(x + 5) 2 — x (x — 10) = x 2 + 2 • 5 • x + 25 — x 2 + 10x

Затем приведем подобные слагаемые:

x 2 + 2 • 5 • x + 25 — x 2 + 10x = 20 x + 25

Далее подставим x из условия:

20 x + 25 = 20 • (-1/20) + 25 = — 1 + 25 = 24

pазбирался: Даниил Романович | обсудить разбор | оценить

На координатной прямо отмечены числа a и b:

Что значит найти значение выражения в математике 3 класс

Какое из приведенных утверждений для этих чисел неверно:

Для удобства решения необходимо оценить данные нам числа. Из координатной прямой видно, что a > 0, так как расположено справа от ноля, а b 0

Значит, утверждение неверно.

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Числовые и буквенные выражения

Что значит найти значение выражения в математике 3 класс

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.

Например:

Это простые числовые выражения.

Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:

Это сложные числовые выражения.

Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.

11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

14 больше 4
14 > 4
6 + 8 > 2 * 2

Буквенные выражения

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы.

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

Пример 1. Найдите значение выражения: 5 + x.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x).

Выражения с переменными

Переменная — это значение буквы в буквенном выражении.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.

5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a

Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.

Задание раз.

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Источник

Нахождение значения выражения, примеры, решения.

После того, как мы узнали что такое значение выражения, логичным будет разобраться с вопросом как найти значение выражения. Сейчас мы рассмотрим правила нахождения значений выражений. Начнем с числовых выражений, и будем продвигаться от самых простых случаев, когда выражение содержит лишь числа и соединяющие их знаки арифметических действий, и закончим общим случаем, когда в выражении, значение которого нужно найти, содержатся скобки, дроби, корни, степени и другие функции. В конце покажем, как находить значения буквенных выражений и выражений с переменными при выбранных значениях переменных. Всю теорию снабдим примерами с подробным описанием решений.

Навигация по странице.

Как найти значение числового выражения?

Разберемся с правилами, по которым вычисляются значения выражений.

Простейшие случаи

Знакомство с правилами нахождения значений выражений начнем со случаев, когда числовое выражение не содержит в своей записи ничего другого, кроме чисел и знаков арифметических действий. Эти случаи мы и назвали простейшими.

Чтобы успешно находить значения таких выражений, нужно уметь выполнять действия с различными числами, а также иметь представление о порядке выполнения действий в выражениях без скобок.

Итак, если числовое выражение составлено из чисел и знаков +, −, · и :, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.

Приведем решение примеров для пояснения.

Найдите значение выражения Что значит найти значение выражения в математике 3 класс.

Подставляем полученные значения в исходное выражение: Что значит найти значение выражения в математике 3 класс.

Осталось записать десятичную дробь в виде обыкновенной дроби Что значит найти значение выражения в математике 3 класс, вспомнить правило вычитания отрицательных чисел Что значит найти значение выражения в математике 3 класс, сгруппировать и сложить обыкновенные дроби Что значит найти значение выражения в математике 3 класс, и сложить обыкновенную дробь с натуральным числом Что значит найти значение выражения в математике 3 класс.

Так мы нашли искомое значение выражения.

Что значит найти значение выражения в математике 3 класс.

Со скобками

Теперь разберемся, как найти значение выражения, содержащего в своей записи скобки, указывающие порядок выполнения действий. При этом сначала следует находить значение выражений в скобках, придерживаясь принятого порядка выполнения действий, а затем выполнять остальные действия, что приведет к искомому значению исходного выражения. Это правило перекликается с порядке выполнения действий в выражениях без скобокпорядком выполнения действий в выражениях со скобками.

Покажем решение примера.

Аналогично находятся значения выражений, содержащих скобки в скобках. Удобно нахождение значения начинать со внутренних скобок и продвигаться к внешним.

Итак, в нахождении значений выражений со скобками нет ничего сложного, главное – соблюдать последовательность выполнения действий, и не допускать вычислительных ошибок.

С корнями

Числовые выражения, значения которых требуется найти, могут в своей записи содержать различные знаки, в частности, корни. Как найти значение корня, под которым стоит число, объясняет материал статьи извлечение корней.

А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, Что значит найти значение выражения в математике 3 класс.

В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.

Найдите значение выражения с корнями Что значит найти значение выражения в математике 3 класс.

Теперь вычислим значение второго корня из исходного выражения: Что значит найти значение выражения в математике 3 класс.

Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.

Каково значение выражения Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

Со степенями

Когда в выражении, значение которого мы находим, присутствуют степени, то их значения вычисляются до выполнения остальных действий. Вычислению значений степеней чисел посвящена статья возведение в степень.

Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе свойств степени.

Найдите значение выражения Что значит найти значение выражения в математике 3 класс.

Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем
Что значит найти значение выражения в математике 3 класс

Что значит найти значение выражения в математике 3 класс.

Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из следующих пунктов.

Находим значение выражения с дробями

Числовые выражения в своей записи могут содержать дроби. Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.

Рассмотрим решение примера.

Найдите значение выражения с дробями Что значит найти значение выражения в математике 3 класс.

В исходном числовом выражении три дроби Что значит найти значение выражения в математике 3 класси Что значит найти значение выражения в математике 3 класс. Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.

В числителе и знаменателе дроби Что значит найти значение выражения в математике 3 класснаходятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие: Что значит найти значение выражения в математике 3 класс.

Третья дробь Что значит найти значение выражения в математике 3 классв числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем Что значит найти значение выражения в математике 3 класс.

Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений, базирующееся на выполнении действий с дробями и на сокращении дробей.

Найдите значение выражения Что значит найти значение выражения в математике 3 класс.

Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: Что значит найти значение выражения в математике 3 класс. После этого исходное выражение примет вид Что значит найти значение выражения в математике 3 класс. После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения: Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

С логарифмами

Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида Что значит найти значение выражения в математике 3 класс. В основании логарифма и под его знаком находятся числовые выражения, находим их значения: Что значит найти значение выражения в математике 3 класс. Теперь находим логарифм, после чего завершаем вычисления: Что значит найти значение выражения в математике 3 класс.

Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием свойств логарифмов. При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений.

Найдите значение выражения с логарифмами Что значит найти значение выражения в математике 3 класс.

Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:
Что значит найти значение выражения в математике 3 класс

Что значит найти значение выражения в математике 3 класс.

Как найти значение тригонометрического выражения?

Когда числовое выражение содержит синус, косинус, тангенс, котангенс или арксинус, арккосинус, арктангенс, арккотангенс и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.

Найдите значение выражения Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения.

Чему равно значение тригонометрического выражения Что значит найти значение выражения в математике 3 класс.

Преобразуем исходное выражение, используя тригонометрические формулы, в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:
Что значит найти значение выражения в математике 3 класс

Проделанные преобразования помогли нам найти значение выражения.

Что значит найти значение выражения в математике 3 класс.

Общий случай

В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:

Перечисленные действия выполняются до получения конечного результата.

Найдите значение выражения Что значит найти значение выражения в математике 3 класс.

Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?

Продвигаясь по записи слева на право, мы натыкаемся на дробь вида Что значит найти значение выражения в математике 3 класс. Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.

В числителе мы имеем корень вида Что значит найти значение выражения в математике 3 класс. Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения Что значит найти значение выражения в математике 3 класс. Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения Что значит найти значение выражения в математике 3 класс. Это мы можем сделать: Что значит найти значение выражения в математике 3 класс. Тогда Что значит найти значение выражения в математике 3 класс, откуда Что значит найти значение выражения в математике 3 класси Что значит найти значение выражения в математике 3 класс.

Со знаменателем все просто: Что значит найти значение выражения в математике 3 класс.

Таким образом, Что значит найти значение выражения в математике 3 класс.

После подстановки этого результата в исходное выражение, оно примет вид Что значит найти значение выражения в математике 3 класс. В полученном выражении содержится степень Что значит найти значение выражения в математике 3 класс. Чтобы найти ее значение, сначала придется найти значение показателя, имеем Что значит найти значение выражения в математике 3 класс.

Итак, Что значит найти значение выражения в математике 3 класс.

Что значит найти значение выражения в математике 3 класс.

Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.

Рациональные способы вычисления значений выражений

Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.

К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.

Нахождение значения буквенного выражения и выражения с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.

Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *