Что значит найти область определения дроби
Область определения функции
Прежде чем перейти к изучению области определения функции внимательно изучите уроки
«Что такое функция в математике» и «Как решать задачи на функцию».
Вспомним кратко основные определения функции в математике.
Функция — это зависимость переменной « y » от независимой переменной « x ».
Функцию можно задать через формулу (аналитически). Например:
Вместо « x » (аргумента функции) в формулу « у = 2x » подставляем произвольные числовые значения и по заданной формуле вычисляем
значение « y ».
Подставим несколько числовых значений вместо « x » в формулу « у = 2x » и запишем результаты в таблицу.
x | y = 2 x | ||||||
---|---|---|---|---|---|---|---|
x = −2 | у = 2 · (−2) = −4 | ||||||
x = 0 | y = 2 · 0 = 0 | ||||||
x =
| y = 2 ·
=
= 1 | ||||||
x = 3 | y = 2 · 3 = 6 |
Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).
Обозначают область определения функции как:
Вернемся к нашей функции « у = 2x » и найдем её область определения.
Посмотрим ещё раз на таблицу функции « y = 2x », где мы подставляли произвольные числа вместо « x », чтобы найти « y ».
x | y = 2x | ||
---|---|---|---|
−2 | −4 | ||
0 | 0 | ||
| 1 | ||
3 | 6 |
Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать, что вместо « x » мы могли подставлять любое действительное число.
Другими словами, вместо « x » можно подставить любые числа, например:
В нашей функции « у = 2x » вместо « x » можно подставить любое число, поэтому область определения функции « у = 2x » — это любые действительные числа.
Запишем область определения функции « у = 2x » через математические обозначения.
Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на математические символы. Для этого вспомним понятие числовой оси.
Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции « у = 2x ». Так как в функции
« у = 2x » нет ограничений для « x », заштрихуем всю числовую ось от минус бесконечности « −∞ » до плюс бесконечности « +∞ ».
Запись выше читается как: « x » принадлежит промежутку от минус бесконечности до плюс бесконечности.
Запишем окончательный ответ для области определения функции.
По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как « x ∈ R ».
Читается « x ∈ R » как: « x » принадлежит всем действительным числам».
Записи « x ∈ (−∞ ; +∞) » и
« x ∈ R » одинаковы по своей сути.
Область определения функции с дробью
Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.
№ 233 (2) Мерзляк 8 класс
Найдите область определения функции:
Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x » в функции
« f(x) =
8 |
x + 5 |
».
По законам математики из школьного курса мы помним, что на ноль делить нельзя. Иначе говоря, знаменатель (нижняя часть дроби) не может быть равен нулю.
Переменная « x » находится в знаменателе функции « f(x) =
8 |
x + 5 |
». Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.
Получается, что « x » может принимать любые числовые значения кроме « −5 ». На числовой оси заштрихуем все доступные значения для « x ».
Число « −5 » отмечено «пустой» точкой на числовой оси, так как не входит в область допустимых значений.
Запишем заштрихованную область на числовой оси через знаки неравенства.
Запишем промежутки через математические символы. Так как число « −5 » не входит в область определения функции, при записи ответа рядом с ним будет стоять круглая скобка.
Вспомнить запись ответа через математические символы можно в уроке «Как записать ответ неравенства».
Запишем окончательный ответ для области определения функции
« f(x) =
8 |
x + 5 |
».
Область определения функции с корнем
Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.
№ 98 (5) Колягин (Алимов) 8 класс
Найти область определения функции:
Из урока «Квадратный корень» мы помним, что подкоренное выражение корня чётной степени должно быть больше или равно нулю.
Найдём, какие значения может принимать « x » в функции
« у = √ 6 − x ». Подкоренное выражение
« 6 − x » должно быть больше или равно нулю.
Решим линейное неравенство по правилам урока «Решение линейных неравенств».
Запишем полученный ответ, используя числовую ось и математические символы. Число « 6 » отмечено «заполненной» точкой на числовой оси, так как входит в область допустимых значений.
Правило для определения области определения функции
Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:
При нахождении области определения функции необходимо всегда задавать себе два вопроса:
Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.
Рассмотрим пример поиска области определения функции с корнем и дробью.
№ 242 (3) Мерзляк 8 класс
Найдите область определения функции:
Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.
В функции « f(x) = √ x + 3 +
1 |
x 2 − 9 |
» есть дробь «
1 |
x 2 − 9 |
», где « x » расположен в знаменателе. Запишем условие, что знаменатель « x 2 − 9 » не может быть равен нулю.
Решаем квадратное уравнение через формулу квадратного уравнения.
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−0 ± √ 0 2 − 4 · 1 · (−9) |
2 · 1 |
x1;2 ≠
−0 ± √ 0 − (−36) |
2 |
Запомним полученный результат. Задаем себе второй вопрос. Проверяем, есть ли в формуле функции
« f(x) = √ x + 3 +
1 |
x 2 − 9 |
» корень четной степени. В формуле есть квадратный корень « √ x + 3 ». Подкоренное выражение « x + 3 » должно быть больше или равно нулю.
Решим линейное неравенство.
Объединим полученные ответы по обоим вопросам:
Объединим все полученные результаты на числовых осях. Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.
Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях. Обратим внимание, что числа « −3 » и « 3 » отмечены «пустыми» точками и не входят в итоговое решение.
Получаем два числовых
промежутка « −3 » и « x > 3 », которые являются областью определения функции
« f(x) = √ x + 3 +
1 |
x 2 − 9 |
». Запишем окончательный ответ.
Примеры определения области определения функции
№ 101 Колягин (Алимов) 8 класс
Найти область определения функции:
Для поиска области определения функций задаем себе первый вопрос. Есть ли знаменатель, в котором содержится « x »?
Ответ: в формуле функции
« y = 6 √ x + 5 √ 1 + x » нет дробей.
Задаем второй вопрос. Есть ли в функции корни четной степени?
Ответ: в функции есть корень шестой степени: « 6 √ x ». Степень корня — число « 6 ». Число « 6 » — чётное, поэтому подкоренное выражение корня « 6 √ x » должно быть больше или равно нулю.
В формуле функции « y = 6 √ x + 5 √ 1 + x » также есть корень пятой степени
« 5 √ 1 + x ». Степень корня « 5 » — нечётное число, значит, никаких ограничений на подкоренное выражение « 1 + x » не накладывается.
Получается, что единственное ограничение области определения функции
« y = 6 √ x + 5 √ 1 + x » — это ограничение подкоренного выражения « 6 √ x ».
Нарисуем область определения функции на числовой оси и запишем ответ.
№ 242 (4) Мерзляк 8 класс
Найдите область определения функции:
Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два. Выделим знаменатели с « x » красным цветом.
Запишем условие, что каждый из знаменателей не должен быть равен нулю.
√ x + 2 ≠ 0 |
x 2 − 7x + 6 ≠ 0 |
Обозначим их номерами « 1 » и « 2 » и решим каждое уравнение отдельно.
√ x + 2 ≠ 0 (1) |
x 2 − 7x + 6 ≠ 0 (2) |
Решаем первое уравнение.
Если значение квадратного корня
« √ x + 2 ≠ 0 » не должно быть равно нулю, значит, подкоренное выражение
« x + 2 ≠ 0 » также не должно быть равно нулю.
Теперь решим уравнение под номером « 2 », используя формулу квадратного уравнения.
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−7) ± √ (−7) 2 − 4 · 1 · 6 |
2 · 1 |
x1;2 =
7 ± √ 49 − 24 |
2 |
x1;2 =
7 ± 5 |
2 |
x1 ≠
| x2 ≠
|
x1 ≠
| x2 ≠
|
x1 ≠ 6 | x2 ≠ 1 |
Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.
x ≠ −2 |
x ≠ 1 |
x ≠ 6 |
В формуле функции
« f(x) =
√ x − 4 |
√ x + 2 |
+
4x − 3 |
x 2 − 7x + 6 |
»
есть два корня « √ x − 4 » и « √ x + 2 ». Их подкоренные выражения должны быть больше или равны нулю.
x − 4 ≥ 0 |
x + 2 ≥ 0 |
x − 4 ≥ 0 |
x + 2 ≥ 0 |
x ≥ 4 |
x ≥ −2 |
Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.
Выпишем результат решения системы неравенств.
Объединим в таблицу ниже полученные ответы по обеим проверкам:
Результат проверки, что знаменатели дробей с « x » не равны нулю
Результат проверки, что подкоренные выражения должно быть больше или равны нулю
Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет всем полученным условиям.
Как найти область определения функции?
Что значит найти область определения
После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f ( x ) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.
Ограничение области определения
Правила нахождения области определения
При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.
Область определения суммы, разности и произведения функций
Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:
Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.
Найти область определения функции вида y = x 7 + x + 5 + t g x .
Для нахождения области определения произведения функций необходимо применять правило:
Ответ: область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.
Необходимо рассмотреть как разность двух функций f 1 и f 2 .
Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что
Область определения сложной функции
Видно, что область определения сложной функции вида y = f 1 ( f 2 ( x ) ) находится на пересечении двух множеств таких, где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . В стандартном обозначении это примет вид
x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 )
Рассмотрим решение нескольких примеров.
Тогда получим систему неравенств вида
Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.
Преобразуем систему вида
Заданная функция может быть расписана, как y = f 1 ( f 2 ( f 3 ( x ) ) ) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.
При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.
Область определения дроби
x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0
Область определения логарифма с переменной в основании
x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1
А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:
x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 log a f 2 ( x ) ≠ 0 = x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1
Область определения показательно-степенной функции
В общем случае
Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.
Таблицы основных результатов
Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф
Сумма, разность, произведение функций
Расположим функции и их области определения.
Прямая пропорциональность y = k · x
Обратная пропорциональность y = k x
Дробная y = f 1 ( x ) f 2 ( x )
y = log f 2 ( x ) f 1 ( x )
В частности, y = log a f 1 ( x )
В частности, y = log f 2 ( x ) a
Как найти область определения функции?
на графике тангенса |
Для котангенса:
на графике котангенса |
4. Обратные тригонометрические функции.
Арксинус | Арккосинус | Арктангенс, Арккотангенс |
Пример 1 | Пример 2 |
Пример 3 | Пример 4 |
Пример 5 | Пример 6 |
Пример 7 | Пример 8 |
Пример 9 | Пример 10 |
Пример 11 | Пример 12 |
Пример 13 | Пример 14 |
Пример 15 | Пример 16 |
Пример нахождения области определения функции №1
Нахождение области определения любой линейной функции, т.е. функции первой степени:
y = 2x + 3 — уравнение задает прямую на плоскости.
Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?
Попробуем подставить значение х=0
Попробуем подставить значение х=10
Попробуем подставить значение х=-10
Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.
Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.
Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R
Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)
Для любой функции вида y = ax + b областью определения является множество действительных чисел.
Пример нахождения области определения функции №2
Задана функция вида:
y = 10/(x + 5) — уравнение гиперболы
Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не
обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.
Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.
Для наглядности изобразим графически:
Формы записи ответа: D(f)=R\ <-5>или D(f)=(-∞;-5) ∪ (-5;+∞) или x ∈ R\ <-5>или x ∈ (-∞;-5) ∪ (-5;+∞)
Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.
Пример нахождения области определения функции №3
Рассмотрим пример нахождения области определения функции с корнем четной степени:
Решим простое неравенство:
При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует.
Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля.
Пример нахождения области определения функции №4
Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:
В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)
Решим строгое неравенство методом интервалов:
Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)
Пример нахождения области определения функции №5
Рассмотрим пример нахождения области определения функции с корнем нечетной степени:
Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.
Пример нахождения области определения функции №6
Рассмотрим пример нахождения области определения логарифма:
Простенький пример на область определения логарифмической функции.
Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:
Покажем на числовой прямой:
Пример нахождения области определения функции №7
Задана функция вида:
1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):
Второе ограничение — подлогарифмическое выражение положительно:
Т.е. для определения области определения заданной функции необходимо решить систему:
Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.
Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.
Пример нахождения области определения функции №8
Рассмотрим следующий пример:
Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:
Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:
Таким образом для определения области определения исходной функции необходимо решить систему неравенств:
Каждое из неравенств решим по отдельности.
Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.
Выносим на координатную прямую:
Объясню как расставлены знаки в каждом из интервалов:
Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.
Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.