Не на сколько, а В число раз, примерно кратное десяти. Масса взрослого человека на порядок больше новорождённого.
*** очень меня поразившее *** Если это Вас интересует, поинтересуйтесь теорией очередей 🙂
*** драки за муку, соль, мыло и спички *** Когда примерно и где это было?
Неужели кто-то пользуется двоичной в обыденной жизни, которую описывают СМИ?
А «на порядок хуже» ничего быть не может. Это не попытка иронии автора, а, думаю, результат его непросвещенности. Примерно из той же оперы, что «Ваши волосы выглядят в 5 раз лучше».
ИМХО: не надо быть семи пядей во лбу или ходить за тридевять земель, чтобы догадаться, что есть тьма [=10000] выражений, в которых конкретные числа являются просто синонимом слова «много».
>> что есть тьма [=10000] выражений, в которых конкретные числа являются просто синонимом слова «много».
%%Строго говоря, выражение «на порядок» не обязательно должно относится к десятичной записи числа.%%
Истинно так! Тему эту на Вече уже поднимали и примеры того, как двоичность постепенно, не без участия Apple Inc, Microsoft Corporation и ювенильных энтузиастов-программистов, проникает в речь.
Для многих сегодня выражение «на порядок» означает двукратность, точнее может сказать только частотно-вариативный словарь. В «Москву» еще не поступил?
«. проникает в речь, кажется, приводились.»
> В «Москву» еще не поступил?
В какую Москву, adada? Он и к adad’е-то ещё ой как нескоро поступит. Если.
перед тем как задать вопрос, прочтите, пожалуйста, FAQ. уважайте чужое время.
Октябрь 2021
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Navigation
Свежие записи
Архив
Друзья
Личная информация
Поделиться
Пожаловаться
Page Summary
[#] (без темы)
[#] (без темы)
[#] (без темы)
[#] (без темы)
[#] Внимание! Правильный ответ…
[#] (без темы)
[#] (без темы)
[#] (без темы)
[#] RTFM
[#] (без темы)
[#] Оффтоп
[#] (без темы)
На порядок больше?
22 апр, 2008 @ 21:53
Внимание! Правильный ответ…
Давайте-ка я, раз тут споры такие пошли, скопирую сюда, а то в пылу борьбы за истину можно и не потыцать…
Вопрос был такой — допустимо ли говорить «Сидоров на порядок старше Петрова».
Эта система записи употребительна, конечно же, только для десятичных чисел.
Можно говорить «на порядок» только тогда, когда мантисса числа либо не известна, либо не важна. Например, можно сказать «электрон легче протона на три порядка, поэтому массой электрона в этом рассуждении пренебрежем». Сказать, что X старше Y на порядок можно о звездах или геологических образцах. О людях так не говорят. Если Y, например, 20 лет, то возраст Х будет «около» 200 лет. Столько не живут. Утверждение ложно — можете быть уверены; то же самое будет сказать «возраст X — примерно 200 лет». Кто так говорит, тот врет, прикрывая ложь «наукоподобием» выражения.
Еще раз обращу на это внимание: на порядок больше 20 значит не «от 60 до 600», не «от P до Q» вообще! На порядок больше 20 означает «около 200, с точностью в пол-порядка, насколько я могу измерить или оценить». ___________________ 1. С благодарностью adaon_lf за правильный термин. 2. Денежная единица королевства Мумба-Юмба.
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Подставляем полученные значения в исходное выражение:
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!
Равенство и неравенство. Знаки: больше, меньше, равно
Математические знаки
Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.
Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:
Символ меньше (
Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:
Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:
Равенство и неравенство
Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.
Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».
Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.
Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:
Что означает на порядок выше или ниже. Стандартная форма записи числа, мантисса числа, порядок числа
Полагают, что число десять принято за основание потому, что первоначально люди считают обыкновенно по пальцам.
Число шестого порядка состоит из пяти единиц шестого порядка (пятьсот тысяч), к которому присоединено число четвертого порядка (семь тысяч двести семь).
Число четвертого порядка состоит из семи единиц четвертого порядка (семь тысяч), к которому присоединено число третьего порядка (двести семь).
Число третьего порядка состоит из двух единиц третьего порядка (двести), к которому присоединяется число первого порядка (семь).
Число семь состоит из семи простых единиц.
Всякое число содержится между двумя единицами различных порядков. Всякое число более единицы одного порядка и менее единицы следующего высшего порядка. Так, число триста сорок семь более ста и менее тысячи.
Чаще под порядком подразумевают не сам класс эквивалентности C n <\displaystyle <\mathcal >_> а некоторую его числовую характеристику, задающую этот класс при данных условиях (например, порядковый номер класса n <\displaystyle n>при условии, что некоторый класс C 0 <\displaystyle <\mathcal >_<0>> был задан или подразумевается).
Порядок числа
Разность порядков
Равенство разности порядков нулю является необходимым и достаточным условием того, что числа принадлежат к одному порядку.
Обобщение разности порядков
В такой интерпретации смысл приобретают выражения вроде «числа x 1 <\displaystyle x_<1>> и x 2 <\displaystyle x_<2>> различаются не более чем на полпорядка», то есть | log r x 2 x 1 | ≤ 1 2 <\displaystyle \left|\log _<\frac >>>\right|\leq <\frac <1><2>>>
Часто говорят «на порядок больше», «на порядок меньше» или даже «больше/меньше на несколько порядков». Интуитивно понятно, что «на порядок больше» означает «сильно больше», «значительно больше» – но вот хотелось бы знать, на сколько именно? Если прочитаете эту статью, будете знать точно.
Любое действительное число. Простите. Возможно, не все помнят, что это такое. А знаете – неважно. Как сказал дядюшка Мерфи: «Если вы не понимаете какой-либо термин в технической статье или документации, смело его пропускайте – статья полностью сохранит свой смысл и без этого термина».
Ноль, кстати, невозможно записать таким способом, потому что мантисса, по определению, не ноль, а десятку в какую целую степень ни возводи, всё равно получится число, большее ноля, а произведение двух чисел, не равных нулю, не равно нулю.
Такой вид записи числа называют научным или стандартным. Он удобен, например, тем, что числа, записанные в такой нотации, удобно сравнивать: если числа имеют один и тот же знак (оба положительные или оба отрицательные), то сначала сравниваются экспоненты, и только потом, если экспоненты равны, сравниваются мантиссы.
И вот тут-то мы и подходим к ответу на вопрос, что значит «на порядок больше». Другое, более русское, название экспоненты – «порядок». Число 256 – число второго порядка, потому что 256 = 2.56 * 10^2. Миллион – число шестого порядка, миллиард – девятого. Вообще-то, 1024 ровно в 4 раза больше числа 256, но если необходимо просто определить, какое из них больше, вполне достаточно констатировать, что первое на порядок больше второго.
Подумаешь, скажете вы, открыл Америку! И так понятно: смотрим, какое число «длиннее» – то и больше! В общем – да. Интуитивно данное понятие уже входило в круг ваших понятий, в этой статье мы просто оформили их и придали им бо льшую чёткость.
Ещё парочка примеров: пять миллиардов на три порядка больше семи миллионов; скорость чтения/записи данных на жёсткий диск (миллисекунды, 10^(-3)) на три порядка меньше скорости доступа к оперативной памяти (микросекунды, 10^(-6)).
Вот, в первом приближении, и всё. Теперь вы можете с уверенностью щеголять этим термином. Или просто употреблять его грамотно и к месту. Последнее, пожалуй, предпочтительнее.
Почему «в первом приближении»? Хм. Есть довольно известная в кругах программистов шутка: для программиста «на порядок» означает «в два раза». Почему в два? Мы же только что рассказали, что «на порядок» – это «в десять раз»? Как вам сказать. Есть один нюанс. Но это уже тема другого разговора.
Например, число 3251 в стандартной форме записывается так:
Здесь число 3,251 является мантиссой, а число 3 является порядком.
Для того, чтобы сравнить два числа, записанных в стандартной форме, нужно сначала сравнить их порядки. Большим будет то число, порядок которого больше. Если же порядки сравниваемых чисел одинаковы, то нужно сравнить мантиссы чисел. Большим в этом случае будет то число, у которого мантисса больше.
Например, если сравнить между собой записанные в стандартной форме числа
то, очевидно, первое число больше второго, поскольку у него порядок больше.
Если же сравнить между собой числа
то, очевидно, что второе число больше, чем первое, поскольку порядки у этих чисел совпадают, а мантисса у второго числа больше.
Специализированные варианты использования слова:
Математика
Смотреть что такое «Порядок (математика)» в других словарях:
Евклид. Деталь «Афинской школы» Рафаэля Математика (от др. греч … Википедия
Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Данная статья часть обзора История математики. Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э. Древнейшие древнеегипетские математические тексты относятся к началу II… … Википедия
Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия
Теория групп … Википедия
В данной таблице представлен список эпизодов американского телесериала «Закон и порядок». Первая серия была показана 13 сентября 1990 года на канале NBC. На данный момент вышло 20 сезонов сериала. Всего снято 456 эпизода. В 2010 году сериал… … Википедия
— (порядок точности численного метода, степень точности численного метода, порядок точности, степень точности) наибольшая степень полинома, для которой численный метод даёт точное решение задачи. Другое определение: говорят, что численный… … Википедия
У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия