Что значит мосфет транзистор

Что значит мосфет транзистор

MOSFET-транзистор, определение и типы

Ключевыми преимуществами MOSFET-транзисторов являются:

— малая энергия на переключение транзисторы (фактически нужно только перезарядить емкость затвора);

— высокая скорость переключения;

— во включённом состоянии представляет собой омическое сопротивление.

MOSFET-транзисторы как и биполярные транзисторы имеют две основных типа структуры: n-канальные и p-канальные.

Не вдаваясь во внутренние подробности строения MOSFET транзисторов укажем основные отличия в принципе управления:

— n-канальный MOSFET-транзистор открывается положительной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от стока к истоку;

— p-канальный MOSFET-транзистор открывается отрицательной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от истока к стоку.

По той же причине, что и в биполярных транзисторах, n-канальные MOSFET-транзисторы шустрее p-канальных MOSFET-транзисторов.

Условные обозначения транзисторов n-канального и p-канального MOSFET-транзисторов представлены на рисунке MOSFET.1.

Что значит мосфет транзистор

Особенности MOSFET-транзисторов. Реверсный диод в составе MOSFET-транзистора

MOSFET-транзистор в открытом состоянии фактически представляет собой сопротивление. То есть падение напряжения на транзисторе зависит только от его тока. Это очень важное отличие от биполярного транзистора и IGBT-транзистора, всегда имеющих некоторое падение напряжение в открытом состоянии.

В закрытом состоянии сопротивление MOSFET-транзистора составляет десятки-сотни МОм. В открытом – от единиц Ом до единиц миллиОм. Впрочем, сопротивление MOSFET-транзистора в открытом состоянии непостоянно – оно несколько увеличивается с ростом тока. Как правило, не более чем 20-25% при изменении тока от минимального значения до максимального.

Необходимо отметить, что из-за особенностей внутренней структуры MOSFET-транзистор имеет в своем составе паразитный обратный диод, включенный параллельно стоку-истоку, который иногда приводят в условном обозначении транзистора (рисунок MOSFET.2). Если быть до конца точным, то паразитный диод является следствием паразитного транзистора присутствующего в конструкции MOSFET-транзистора. При изготовлении база транзистора электрически соединяется с истоком и коллекторный переход выполняет роль обратного диода.

Что значит мосфет транзистор

Падение напряжения на обратном диоде составляет 0,6-0,8 В, что меньше падения напряжения на обычном кремниевом p-n диоде (рисунок MOSFET.3). Именно по этой причине параллельное включение внешних обратных диодов бессмысленно. Ложку дегтя еще добавляет и то, что этот диод достаточно медленный, то есть достаточно долго (порядка 0,3-1 мкс) переходит в непроводящее состояние при смене полярности тока. Существуют схемотехнические способы обойти этот диод например путем последовательного включения в цепь стока диода Шоттки и «обходного» быстродействующего диода включаемого параллельно цепи транзистора и диода.

Что значит мосфет транзистор

Достаточно подробно про внутреннюю структуру MOSFET-транзисторов изложено в [Энциклопедия устройств на полевых транзисторах. Дьяконов В.П.,Максимчк А.А.,Ремиев А.М.,Смердов В.Ю. СОЛОН-Р. 2002. 512 с.].

Применение MOSFET-транзисторов

Области использования MOSFET-транзисторов:

— в импульсных преобразователях и стабилизаторах;

— в генераторных устройствах;

— в усилительных каскадах (особенно в звуковых Hi-Fi усилителях);

— в твердотельных реле;

— в качестве элемента логических схем.

Основные преимущества MOSFET-транзисторов проявляются при их использовании в качестве ключевых элементов.

При всех преимуществах MOSFET-транзисторы достаточно «нежные» существа: боятся статического электричества, разрушаются при перегреве свыше 150 °С. Из этого следует то, что полевые транзисторы более критичны к перегреву при пайке по сравнению с биполярными, а также то, что с ними целесообразно работать при условии защиты от статического электричества.

Основные параметры MOSFET-транзистора

1. Максимальное напряжение сток-исток (Drain-Source Voltage) VDS – максимально допустимое напряжение между стоком и истоком транзистора.

2. Сопротивление сток-исток RDS – сопротивление между стоком и истоком в открытом состоянии. При заданном напряжении затвор-исток. И токе стока.

3. Максимальное напряжение затвор-исток (Gate-Source Voltage) VGS ­– максимальное управляющее напряжение затвор-исток. При превышении этого напряжения возможен пробой затворного диэлектрика и выход транзистора из строя.

4. Максимальный ток стока в непрерывном режиме (Continuous Drain Current) ID – максимальная величина постоянно протекающего тока стока в непрерывном режиме. Зависит от температуры корпуса транзистора и условий теплоотвода.

6. Энергия рассеивания кристалла (Single Pulse Avalanche Energy) EAS – максимальная энергия, которая может быть рассеяна на кристалле транзистора без его разрушения.

7. Максимальная рассеиваемая мощность (Maximum Power Dissipation) PD – максимальная тепловая мощность, которая может быть отведена от корпуса транзистора (при заданной температуре корпуса транзистора).

12. Ток утечки стока (Zero Gate Voltage Drain Current) IDSS – ток стока выключенного транзистора (при нулевом напряжении затвор-исток). Значительно зависит от температуры.

13. Ток утечки затвора (Gate-Source Leakage) IGSS – ток через затвор при некотором (как правило максимальном) напряжении затвор-исток.

14. Входная емкость (Input Capacitance) Ciss – суммарная емкость затвор-исток и емкость затвор-сток (при некотором напряжении сток-исток).

15. Выходная емкость (Output Capacitance) Coss – суммарная емкость затвор-сток и емкость сток-исток.

16. Проходная емкость (Reverse Transfer Capacitance) Crss – емкость затвор-сток.

17. Общий заряд затвора (Total Gate Charge) Qg – суммарный заряд затвора, необходимый для перевода транзистора в проводящее состояние.

18. Заряд затвор-исток (Gate-Source Charge) Qgs – заряд емкости затвор-исток.

21. Время задержки включения (Turn-On Delay Time) td(on) – время за которое транзистор накапливает заряд до напряжения на затворе, при котором транзистор начинает открываться.

22. Время роста тока через транзистор (Rise Time) – время, за которое происходит нарастание тока стока транзистора от 10% до 90%.

23. Время задержки выключения (Turn-Off Delay Time) td(off) – время за которое заряд затвора становится меньшим заряда включения, и транзистор начинает закрываться.

25. Индуктивность вывода стока (Internal Drain Inductance) LD – паразитная индуктивность вывода стока транзистора.

26. Индуктивность вывода истока (Internal Source Inductance) LS – паразитная индуктивность вывода истока транзистора.

27. Постоянный прямой ток через обратный диод (Continuous Source-Drain Diode Current) IS – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.

28. Импульсный ток через обратный диод (Pulsed Diode Forward Current) ISM – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.

29. Падение напряжения на диоде (Body Diode Voltage) VSD – прямое падение напряжения на диоде. При заданных температуре и токе истока.

31. Заряд восстановления паразитного диода (Body Diode Reverse Recovery Charge) Qrr – заряд необходимый для восстановления обратной проводимости паразитного диода.

33. Паразитное сопротивление затвора (Gate resistance) RG – паразитное последовательное сопротивление затвора. Именно оно ограничивает скорость переключения при управляющем драйвере с большим выходным током.

Паразитные емкости MOSFET-транзистора

На рисунке MOSFET.4 представлены паразитные емкости MOSFET-транзистора. Их всего три – емкость «затвор-исток», «затвор–сток», «сток-исток». И три их производные – входная емкость (Input Capacitance), проходная емкость (Reverse Transfer Capacitance), выходная емкость (Output Capacitance).

Что значит мосфет транзистор

Рисунок MOSFET.4- Паразитные емкости MOSFET-транзистора

Инерционность MOSFET-транзистора, определяющая времена включения и выключения лимитируется, прежде всего, паразитными емкостями транзистора.

Что значит мосфет транзистор

Рисунок MOSFET.5 – Зависимости паразитных емкостей MOSFET-транзистора от напряжения сток-исток (drain-source). На примере транзистора IRF740 по данным datasheet № 91054 VishaySiliconix

В реальности паразитные емкости не являются постоянными величинами: их величина сильно зависит от напряжения между их «обкладками»: при малых значениях напряжения сток-исток ёмкости имеют значительную величину (например, на порядок превышающие численные значения, указанные в справочных листках) которые быстро уменьшается с ростом напряжения сток-исток (рисунок MOSFET.5). Поэтому все справочные значения емкости справедливы при определенном значении напряжения сток-исток.

Для мощных MOSFET-транзисторов на динамику включения-выключения влияет и паразитное сопротивление затвора.

Детально влияние емкостей на процесс коммутации MOSFET транзистора и проявление так называемого эффекта Миллера представлено в разделе «Управление MOSFET и IGBT транзисторами. Схемотехнические решения. Расчет».

Параллельное включение MOSFET-транзисторов

По причине того, что во включенном состоянии MOSFET-транзистор фактически представляет собой сопротивление, MOSFET-транзисторы легко объединяются параллельно. При этом пропорционально увеличиваются токовые и мощностные характеристики.

Для подавления возможных паразитных осцилляций целесообразно развязывать управляющие затворы через затворные резисторы (рисунок MOSFET.6).

Что значит мосфет транзистор

Источник

Mosfet транзисторы принцип работы

Что такое МОП-транзистор, принцип работы, типы, на схеме, преимущества недостатки

МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами.

Что такое МОП-транзистор

Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.

В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.

Принцип работы МОП-транзистора (MOSFET)

Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку. Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.

Типы МОП-транзистора (MOSFET)

На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.

Режим насыщения

В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.

Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.

Классификация режима насыщения МОП- транзисторов

Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

N-канальный тип насыщения MOSFET

P-канальный тип насыщения MOSFET

Режим истощения

В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.

Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.

Классификация режима истощения МОП-транзисторов

Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

Тип истощения канала N МОП-транзистор

Тип канала истощения канала MOSFET

Символ на схеме разных типов МОП-транзистора (MOSFET)

Символы различных типов МОП-транзисторов изображены ниже.

Применение МОП-транзистора

Преимущества МОП-транзистора

Базовая структура MOSFET транзистора

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Режим истощения МОП-транзистора

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

Режим усиления N-канального МОП-транзистора

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение.

«Полевик» с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора.

Основные преимущества MOSFET

Основные характеристики MOSFET

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs Понравилась статья? Расскажите друзьям:

Источник

Параметры MOSFET транзисторов

Основные параметры мощных транзисторов

Что значит мосфет транзистор

Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.

В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.

Стоит отметить тот факт, что MOSFET’ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.

Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.

Что такое HEXFET транзистор?

В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.

Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hexagonal – «гексагональный».

Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.

Что значит мосфет транзистор

Как видим, он имеет шестиугольную структуру.

Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.

Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.

Вот только небольшая область применения мощных HEXFET транзисторов:

Схемы коммутации электропитания.

Системы управления электродвигателями.

Усилители низкой частоты.

Ключи для управления мощными нагрузками.

Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.

Что значит мосфет транзистор
Транзисторы HEXFET марки IRLZ44ZS

Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).

Что значит мосфет транзистор

Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:

О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице.

Основные параметры полевых транзисторов.

Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:

VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.

ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток.

RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется.

Что значит мосфет транзистор

PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.

VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.

VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт.

Что значит мосфет транзистор

На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175°C оно составляет около 1 вольта, а при температуре 0°C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.

Что значит мосфет транзисторРассмотрим основные параметры мощного полевого HEXFET-транзистора на примере IRLZ44ZS фирмы International Rectifier. Несмотря на впечатляющие характеристики, он имеет малогабаритный корпус D 2 PAK для поверхностного монтажа. Глянем в datasheet и оценим параметры этого изделия.

Предельное напряжение сток-исток (VDSS): 55 Вольт.

Максимальный ток стока (ID): 51 Ампер.

Предельное напряжение затвор-исток (VGS): 16 Вольт.

Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм.

Максимальная мощность (PD): 80 Ватт.

Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!

Взглянем на «кусочек» из таблицы, где указаны максимальные параметры.

Что значит мосфет транзистор

Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25°C) до 36А (при t=100°C)). Мощность при температуре корпуса 25°C равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.

Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance).

На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.

В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания.

Важные особенности MOSFET транзисторов.

Что значит мосфет транзисторОчень важно при работе с полевыми транзисторами, особенно с изолированным затвором, помнить, что они “смертельно” боятся статического электричества. Впаивать их в схему можно только предварительно закоротив выводы между собой тонкой проволокой.

При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.

Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не «развязан» от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные «наводки» из электросети.

Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *