Что значит монотонная последовательность
Числовая последовательность
Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.
Обозначается числовая последовательность так:
где −i-ый член последовательности.
При словестном задании последовательности, описывается из каких элементов она состоит.
Последовательность нечетных чисел:
Последовательность простых чисел :
Последовательности (1) и (2) мы задали словестно.
Последовательность нечетных чисел аналитически задается формулой
Отметим, что последовательность простых чисел невозможно задать аналитически.
Пример задания рекуррентной последовательности:
В этой последовательности
Пример стационарной последовательности:
Возрастающие и убывающие последовательности
Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :
Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :
Пример 1. Выяснить, монотонна ли последовательность
Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):
Найдем разность членов и :
. | (3) |
Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:
Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).
Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и :
(4) |
Посмотрим на правую часть выражения (4). Если a 10, то . Тогда последовательность является убывающей. При a=10 . Последовательность имеет одинаковые члены:
т.е. имеем дело с последовательностью
Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.
Ограниченные и неограниченные последовательности
Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.
Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.
Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и :
(6) |
Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).
Далее, сделаем эквивалентное преобразование для проследовательности (5):
Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.
Так как последовательность возрастающая, то все члены последовательности не меньше . Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.
Сходящиеся и расходящиеся последовательности
Рассмотрим две числовые последовательности:
На координатной прямой изобразим члены этих последовательностей:
Предел числовой последовательности
Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:
Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.
Если k является пределом последовательности (yn), то пишут ( стремится к k или сходится к k).
Обозначают это так:
Выраженние (11) читается так: предел проследовательности , при стремлении n к бесконечности равен k.
Изложим некоторые пояснения к определению 8.
Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал , где радиус этой окрестности ( >0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.
. |
Если же взять другую окресность (пусть ), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.
Пример 4. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы .
Пусть, например, r=0.001. Вычислим n‘ из уравнения
. |
В качестве n0 берем 501. Имеем:
. |
Запишем члены последовательности (12) начиная с номера 501:
. |
Далее, учитывая (13), имеем:
. |
Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность . А по определению 8, это означает:
Пример 5. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы
. |
. |
Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что для любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда . Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).
Запишем члены последовательности, начиная с номера 2000:
. |
Легко проверить, что . Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:
. |
Пример 6. Найти предел последовательности
Решение. Выполним некоторые преобразования выражения (18):
Тогда последовательность (18) можно переписать так:
(19) |
Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):
Свойства сходящихся последовательностей
Сходящиеся последовательности обладают рядом свойств.
Свойство 1. Если последовательность сходится, то только к одному пределу.
Свойство 2. Если последовательность сходится, то она ограничена.
Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).
Предел стационарной последовательности равен значению любого члена последовательности:.
Теорема. Если , то
1. Предел суммы равен сумме пределов:
2. Предел произведения равен произведению пределов:
3. Предел частного равен частному пределов:
4. Постоянный множитель можно вывести за знак предела:
Пример 7. Найти предел последовательности:
Решение. Так как , то
. |
Пример 8. Найти предел последовательности:
Решение. Применив правило «предел суммы» теоремы, получим
. |
Пример 9. Вычислить:
Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»:
Свойства монотонных последовательностей
Давайте повторим это определение, используя в большей степени русский язык. Предел числовой последовательности существует и равен некоторому числу, если, начиная с некоторого номера, все члены
Определение 1. Числовая последовательность (1) называется монотонной, если для каждого натурального выполнено одно из четырех условий: (2), (3), (4), (5). В случае выполнения условия (2) последовательность (1) называется монотонно возрастающей. В случае выполнения условия (3) последовательность (1) называется монотонно убывающей. В случае выполнения условия (4) последовательность (1) называется монотонно неубывающей. В случае выполнения условия (5) последовательность (1) называется монотонно невозрастающей.
Теорема 1. Монотонная и ограниченная числовая последовательность имеет предел.
Доказательство. Достаточно доказать, что монотонно неубывающая последовательность (1) имеет предел. В самом деле, во-первых, возрастающая последовательность является частным случаем неубывающей последовательности. Во-вторых, если поменять знаки последовательности, то она из убывающей превратится в возрастающую.
Итак, пусть для последовательности (1) выполнено условие (4) и последовательность (1) ограничена. Но ведь ограниченное сверху множество имеет точную верхнюю грань, допустим – это число , для которого все . Докажем, что в таком случае . Будем действовать в соответствии с определением предела числовой последовательности. Пусть задано число , тогда число не является верхней гранью множества членов последовательности (1). Следовательно, существует номер такое что . Но тогда, в силу монотонности, при условии также . С учетом соотношения для этих членов числовой последовательности выполнено условие . А это и означает, что . Теорема доказана.
Бином Ньютона
Мы знаем, что , и т. д. Формула бинома Ньютона обобщает эти правила на случай произвольной степени.
Теорема 2. Справедлива формула бинома Ньютона , (6) где .
Доказательство. Теорема будет доказана методом математической индукции. Что такое метод математической индукции? Если утверждение надо доказать для всех натуральных значений параметра , то для этого достаточно доказать это утверждение для и затем доказать, что из справедливости утверждения для следует справедливость этого утверждения для .
Проверим справедливость формулы (6) при . Действительно, , т. к. (проверьте) .
Пусть формула (6) справедлива при , т. е. . Вычислим . Последнее произведение представляется в виде и при этом . С другой стороны, для проверки индуктивного предположения надо доказать, что . Следовательно, для завершения доказательства теоремы Ньютона надо установить справедливость соотношения . Действительно, . Теорема доказана.
Кстати, величина называется числом сочетаний из по и показывает, сколькими способами можно выбрать предметов из предметов.
Число e
Рассмотрим числовую последовательность , (7).
Теорема 3. Для членов числовой последовательности (7) справедливы соотношения: , .
Доказательство. Для величины применим формулу бинома Ньютона. Следовательно, и отсюда . Мы видим, что с ростом каждое слагаемое в последней записи и число слагаемых увеличиваются. Следовательно, . Для доказательства второй части теоремы заметим, что . Теорема доказана.
Итак, числовая последовательность (7) является монотонно возрастающей, ограниченной сверху последовательностью. Следовательно, она имеет предел. Этот предел является важной мировой константой, является трансцендентным числом и имеет специальное название.
Определение 2. Предел числовой последовательности (7) называется числом e.
Итак, по определению . (8)