Что значит функция определена на отрезке

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Что значит функция определена на отрезке

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Что значит функция определена на отрезкеНа рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

Пример №2. Найти нули функции у=f(x) по заданному графику.

Что значит функция определена на отрезке

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Что значит функция определена на отрезке

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Что значит функция определена на отрезке

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Что значит функция определена на отрезке

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Источник

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №15. Возрастание и убывание функции.

Перечень вопросов, рассматриваемых в теме

1) Нахождение промежутков монотонности функции,

2) Определение алгоритма нахождения промежутков возрастания и убывания функции,

3) Решение задачи на нахождения промежутков возрастания и убывания функции

Алгоритм нахождения промежутков возрастания и убывания функции y = f(x)

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

1. Функция y = f(x), определенная на промежутке Х, называется возрастающей на этом промежутке, если для любой пары чисел х1 и х2 из этого промежутка из неравенства х1 f(x2)

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежутки монотонности функции

1.Найдем область определения функции.

D(y) = Что значит функция определена на отрезке

2.Найдем производную функции.

Что значит функция определена на отрезке

3.Определим, на каких промежутках производная положительна (на этих промежутках функция возрастает), на каких – отрицательна (на этих промежутках функция убывает).

Применим для этого метод интервалов. Для определения знака на каждом промежутке подставим произвольное значение из этого промежутка в выражение для производной.

Что значит функция определена на отрезке

Так как на интервале Что значит функция определена на отрезкепроизводная функции отрицательна, то на этом интервале функция убывает.

Так как на интервале Что значит функция определена на отрезкепроизводная функции положительна, то на этом интервале функция возрастает.

Так как на интервале Что значит функция определена на отрезкепроизводная функции отрицательна, то на этом интервале функция убывает.

Так как в точках Что значит функция определена на отрезкефункция непрерывна, то эти точки входят в промежутки возрастания и убывания данной функции.

Следовательно, функция возрастает на Что значит функция определена на отрезке; функция убывает на Что значит функция определена на отрезкеи на Что значит функция определена на отрезке.

Ответ: Функция возрастает на Что значит функция определена на отрезке

Функция убывает на Что значит функция определена на отрезкеи на Что значит функция определена на отрезке.

№2. Определите промежутки монотонности функции

у = х 5 –5х 4 +5х 3 – 4.

y =Что значит функция определена на отрезке

Ответ: Функция возрастает на Что значит функция определена на отрезке;

функция убывает на Что значит функция определена на отрезке.

Источник

Возрастание и убывание функции на интервале, экстремумы

Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Что значит функция определена на отрезке

Точки экстремума, экстремумы функции

Окрестностями точки х 0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Что значит функция определена на отрезке

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Что значит функция определена на отрезке

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Иначе говоря, получим их условия постановки знака:

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Что значит функция определена на отрезке

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Точка х = 5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

Что значит функция определена на отрезке

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

После чего необходимо найти производную:

Точка х = 0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

Изображение на прямой имеет вид

Что значит функция определена на отрезке

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

Перейдем к вычислению минимумов:

Произведем вычисления максимумов функции. Получим, что

Что значит функция определена на отрезке

Второй признак экстремума функции

Для начала находим область определения. Получаем, что

Необходимо продифференцировать функцию, после чего получим

Что значит функция определена на отрезке

Третье достаточное условие экстремума

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

Из выше решенного делаем вывод, что x 3 = 3 является точкой минимума функции.

Что значит функция определена на отрезке

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *