Что значит фотосинтез в биологии

Фотосинтез

Типы питания

Что значит фотосинтез в биологии

Фотосинтез

Что значит фотосинтез в биологии

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

Что значит фотосинтез в биологии

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Что значит фотосинтез в биологии

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Что значит фотосинтез в биологии

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Что значит фотосинтез в биологии

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

Что значит фотосинтез в биологии

Что значит фотосинтез в биологии

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

Что значит фотосинтез в биологии

Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Что значит фотосинтез в биологии

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Уроки биологии: что такое фотосинтез

В природе под воздействием солнечного света протекает жизненно важный процесс, без которого не может обойтись ни одно живое существо на планете Земля. В результате реакции в воздух выделяется кислород, которым мы дышим. Этот процесс получила название фотосинтеза. Что такое фотосинтез с научной точки зрения, и что происходит в хлоропластах клеток растений рассмотрим ниже.

Основа жизни на земле

Что значит фотосинтез в биологииФотосинтез в биологии – это преобразование органических веществ и кислорода из неорганических соединений под воздействием солнечной энергии. Он характерен для всех фотоавтотрофов, которые способны сами вырабатывать органические соединения.

К таким организмам относятся растения, зеленые, пурпурные бактерии, цианобактерии (сине-зеленые водоросли).

Растения фотоавтотрофы впитывают из грунта воду, а из воздуха – углекислый газ. Под воздействием энергии Солнца образуется глюкоза, которая впоследствии превращается на полисахарид – крахмал, необходимый растительным организмам для питания, образования энергии. В окружающую среду выделяется кислород – важное вещество, используемое всеми живыми организмами для дыхания.

Как происходит фотосинтез. Химическую реакцию можно изобразить с помощью следующего уравнения:

6СО2 + 6Н2О + Е = С6Н12О6 + 6О2

Фотосинтетические реакции происходят в растениях на клеточном уровне, а именно – в хлоропластах, содержащих основной пигмент хлорофилл. Это соединение не только придает растениям зеленую окраску, но и принимает активное участие в самом процессе.

Чтобы лучше разобраться в процессе, нужно ознакомиться со строением зеленых органелл хлоропластов.

Это интересно! Каково значение гомеостаза и что это такое

Строение хлоропластов

Хлоропласты – это органоиды клетки, которые содержатся только в организмах растений, цианобактерий. Каждый хлоропласт покрыт двойной мембраной: внешней и внутренней. Внутреннюю часть хлоропласта заполняет строма – основное вещество, по консистенции напоминающее цитоплазму клетки.

Что значит фотосинтез в биологииСтроение хролопласта

Строма хлоропласта состоит из:

Каждая грана имеет вид стопки с монетами, где каждая монетка – это тилакоид, а ламела – полка, на которой выложены граны. Помимо этого хлоропласты имеют собственную генетическую информацию, представленную двуспиральными нитями ДНК, а также рибосомы, которые принимают участие при синтезе белка, капли масла, зерна крахмала.

Это интересно! Биология: какие органические вещества и соединения входят в состав клетки

Полезное видео: фотосинтез

Основные фазы

Фотосинтез имеет две чередующиеся фазы: световую и темновую. Каждая имеет свои особенности протекания и продукты, образующиеся при определенных реакциях. Две фотосистемы, образованные из вспомогательных светособирающих пигментов хлорофилла и каротиноида, передают энергию главному пигменту. В результате происходит преобразование световой энергии в химическую – АТФ (аденозинтрифосфорную кислоту). Что же происходит в процессах фотосинтеза.

Световая

Световая фаза происходит при попадании фотонов света на растение. В хлоропласте она протекает на мембранах тилакоидов.

Подобные процессы происходят и в фотосистеме ІІ. «Возбужденные» электроны покидают реакционный центр и переносятся на внешнюю мембрану тилакоидов, где связываются с акцептором электронов, возвращаются на фотосистему І и восстанавливают ее.

Что значит фотосинтез в биологииСветовая фаза фотосинтеза

А как же восстанавливается фотосистема ІІ? Это происходит за счет фотолиза воды – реакции расщепления Н2О. Вначале молекула воды отдает электроны реакционному центру фотосистемы ІІ, благодаря чему происходит его восстановление. После этого происходит полное расщепление воды на водород и кислород. Последний через устьица эпидермиса листка проникает в окружающую среду.

Это интересно! Из чего состоит нуклеотид и что это такое

Изобразить фотолиз воды можно с помощью уравнения:

2Н2О = 4Н + 4е + О2

Помимо этого, при световой фазе происходит синтез молекул АТФ – химической энергии, которая идет на образование глюкозы. В оболочке тилакоидов содержится ферментативная система, принимающая участие в образовании АТФ. Этот процесс происходит в результате того, что ион водорода переносится через канал специального фермента из внутренней оболочки на внешнюю. После чего высвобождается энергия.

Важно знать! При световой фазе фотосинтеза образуется кислород, а также энергия АТФ, которая используется для синтеза моносахаридов в темновой фазе.

Темновая

Реакции темновой фазы протекают круглосуточно, даже без наличия солнечного света. Фотосинтетические реакции происходят в строме (внутренней среде) хлоропласта. Более детально данный предмет изучал Мелвин Кальвин, в честь которого реакции темновой фазы носят название цикл Кальвина, или С3 путь.

Этот цикл протекает в 3 этапа:

Что значит фотосинтез в биологииПри карбоксилировании вещество под названием рибулозобисфосфат соединяется с частичками углекислого газа. Для этого используется специальный фермент – карбоксилаза. Образуется неустойчивое шестиуглеродное соединение, которое практически сразу же расщепляется на 2 молекулы ФГК (фосфоглицериновой кислоты).

Для восстановления ФГК используется энергия АТФ и НАДФ*Н2, образованных при световой фазе. При последовательных реакциях образуется триуглеродный сахар с фосфатной группой.

Во время регенерации акцепторов часть молекул ФГК используется для восстановления молекул рибулозобисфосфата, который является акцептором СО2. Далее при последовательных реакциях образуется моносахарид – глюкоза. Для всех этих процессов используется энергия АТФ, образованная в световой фазе, а также НАДФ*Н2.

Это интересно! Как устроены органеллы: строение и функции органоидов растительной клетки и животной

Процессы преобразования 6 молекул углекислоты в 1 молекулу глюкозы требуют расщепления 18 молекул АТФ и 12 молекул НАДФ*Н2. Изобразить эти процессы можно с помощью следующего уравнения:

6СО2 + 24Н = С6Н12О6 + 6Н2О

Впоследствии из образованной глюкозы синтезируются более сложные углеводы – полисахариды: крахмал, целлюлоза.

Обратите внимание! При фотосинтезе темновой фазы образуется глюкоза – органическое вещество, необходимое для питания растения, образования энергии.

Нижеприведенная таблица фотосинтеза, поможет лучше усвоить основную суть этого процесса.

Сравнительная таблица фаз фотосинтеза

Особенности протеканияСветовая фазаТемновая фаза
Время протеканиеДнем, при наличии светаКруглосуточно
Место локализацииМембрана тилакоидовСтрома – внутренняя среда хлоропласта
Реакции фотосинтезаФотолиз воды. Восстановление НАДФ до НАДФ*Н2.Карбоксилирование рибулозобисфосфата. Восстановление. Регенерация.
Продукты фотосинтезаО2 (кислород), АТФ (энергия), НАДФ*Н2Моносахарид – глюкоза

Хотя цикл Кальвина является наиболее характерным для темновой фазы фотосинтеза, однако для некоторых тропических растений характерен цикл Хэтча-Слэка (С4-путь), который имеет свои особенности протекания. Во время карбоксилирования в цикле Хэтча-Слэка образуется не фосфоглицериновая кислота, а другие, такие как: щавелевоуксусная, яблочная, аспарагиновая. Также при этих реакциях углекислый газ накапливается в клетках растений, а не выводится при газообмене, как у большинства.

Впоследствии этот газ участвует при фотосинтетических реакциях и образовании глюкозы. Также стоит отметить, что С4-путь фотосинтеза требует больших затрат энергии, чем цикл Кальвина. Основные реакции, продукты образования в цикле Хэтча-Слэка не отличаются от цикла Кальвина.

Благодаря реакциям цикла Хэтча-Слэка у растений практически не происходит фотодыхание, так как устьица эпидермиса находятся в закрытом состоянии. Это позволяет им приспособится к специфическим условиям обитания:

Это интересно! Этапы диссимиляции: что это такое в биологии

Что значит фотосинтез в биологииСравнение световой и темновой фаз

Значение в природе

Благодаря фотосинтезу происходит образование кислорода – жизненно важного вещества для процессов дыхания и накопления внутри клеток энергии, которая дает возможность живым организмам расти, развиваться, размножаться, принимает непосредственное участие в работе всех физиологических систем организма человека, животных.

Важно! Из кислорода в атмосфере образуется озоновый шар, который защищает все организмы от пагубного влияния опасного ультрафиолетового облучения.

Полезное видео: подготовка к ЕГЭ по Биологии фотосинтез

Вывод

Благодаря умению синтезировать кислород и энергию растения формируют первое звено во всех пищевых цепях, являясь продуцентами. Потребляя зеленые растения, все гетеротрофы (животные, люди) вместе с пищей получают жизненно важные ресурсы. Благодаря процессу, протекающему в зеленых растениях и цианобактериях, поддерживается постоянный газовый состав атмосферы и жизнь на земле.

Источник

Фотосинтез

Что значит фотосинтез в биологии

Что значит фотосинтез в биологии

Что значит фотосинтез в биологии

Что значит фотосинтез в биологии

Фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Содержание

Типы фотосинтеза

Бесхлорофилльный фотосинтез

Осуществляется археями рода Halobacterium, является наиболее примитивным типом фотосинтеза, кванты света поглощаются белком-бактериородопсином, имеющим сходство с родопсином в виде наличия ретиналя, этот тип фотосинтеза отличается отсутствием электрон-транспортной цепи, синтез АТФ осуществляется через создание электрохимического градиента протонов или ионов хлора при помощи бактериородопсиновой и галородопсиновой ионной помпы.

Хлорофилльный фотосинтез

Аноксигенный

Осуществляется пурпурными и зелёными бактериями, а также геликобактериями.

Оксигенный

Оксигенный фотосинтез распространён гораздо шире. Осуществляется растениями, цианобактериями и прохлорофитами.

На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза. Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюкогенез, образование сахаров и крахмала из углекислого газа воздуха.

Первые процессы фотосинтеза у цианобактерий появились ещё в архейскую эру.

Пространственная локализация

Что значит фотосинтез в биологии

Что значит фотосинтез в биологии

Фотосинтез растений осуществляется в хлоропластах: обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов, стеблей, однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист. В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем.

Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа). Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис, однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие CAM фотосинтез, сформировали особые механизмы для активной ассимиляции углекислого газа.

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые соединяясь друг с другом образуют тилакоиды, которые в свою очередь группируются в стопки, называемые граны. Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO2 происходит в строме.

В хлоропластах имеются свои ДНК, РНК, рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза.

Цианобактерии, таким образом, как бы сами являются хлоропластом и в их клетке фотосинтетический аппарат не вынесен в особую органеллу. Их тилакоиды, однако, не образуют стопок, а формируют различные складчатые структуры (у единственной цианобактерии Gloeobacter violaceus тилакоиды отсутствуют вовсе, а весь фотосинтетический аппарат находится в цитоплазматической мембране, не образующей впячиваний). У них и растений также есть различия в светособирающем комплексе (см. ниже) и пигментном составе.

Световая (светозависимая) стадия

В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем, роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.

Фотохимическая суть процесса

Хлорофилл имеет два уровня возбуждения (с этим связано наличие двух максимумов на спектре его поглощения): первый связан с переходом на более высокий энергетический уровень электрона системы сопряжённых двойных связей, второй — с возбуждением неспаренных электронов азота и магния порфиринового ядра. При неизменном спине электрона формируются синглетные первое и второе возбуждённое состояние, при изменённом — триплетное первое и второе.

Первая возможность реализуется в светособирающих комплексах, вторая — в реакционных центрах, где переходящий в возбуждённое состояние под воздействием кванта света хлорофилл становится донором электрона (восстановителем) и передаёт его на первичный акцептор. Чтобы предотвратить возвращение электрона на положительно заряженный хлорофилл, первичный акцептор передаёт его вторичному. Кроме того, время жизни полученных соединений выше, чем у возбуждённой молекулы хлорофилла. Происходит стабилизация энергии и разделения зарядов. Для дальнейшей стабилизации вторичный донор электронов восстанавливает положительно заряженный хлорофилл, первичным донором же является в случае оксигенного фотосинтеза вода.

Светособирающие комплексы

Хлорофилл выполняет две функции: поглощения и передачи энергии. Более 90 % всего хлорофилла хлоропластов входит в состав светособирающих комплексов (ССК), выполняющих роль антенны, передающей энергию к реакционному центру фотосистем I или II. Помимо хлорофилла в ССК имеются каротиноиды, а у некоторых водорослей и цианобактерий — фикобилины, роль которых заключается в поглощении света тех длин волн, которые хлорофилл поглощает сравнительно слабо.

Передача энергии идёт резонансным путём (механизм Фёрстера) и занимает для одной пары молекул 10 −10 —10 −12 с, расстояние на которое осуществляется перенос составляет около 1 нм. Передача сопровождается некоторыми потерями энергии (10 % от хлорофилла a к хлорофиллу b, 60 % от каротиноидов к хлорофиллу), из-за чего возможна только от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей. Именно в таком порядке взаимно локализуются пигменты ССК, причём наиболее длинноволновые хлорофиллы находятся в реакционных центрах. Обратный переход энергии невозможен.

ССК растений расположен в мембранах тилакоидов, у цианобактерий основная его часть вынесена за пределы мембран в прикреплённые к ним фикобилисомы — палочковидные полипептидно-пигментные комплексы, в которых находятся различные фикобилины: на периферии фикоэритрины (с максимумом поглощения при 495—565 нм), за ними фикоцианины (550—615 нм) и аллофикоцианины (610—670 нм), последовательно передающие энергию на хлорофилл a (680—700 нм) реакционного центра.

Основные компоненты электронтранспортной цепи

Фотосистема II

Фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II — это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

b6f или b/f-комплекс

b6f комплекс является насосом, перекачивающим протоны из стромы во внутритилакоидное пространство и создающий градиент их концентрации за счёт выделяющейся в окислительно-восстановительных реакциях электронтранспортной цепи энергии. 2 пластохинона дают перекачку 4 протонов. В дальнейшем трансмембранный протонный градиент (pH стромы около 8, внутритилакоидного пространства — 5) используется для синтеза АТФ трансмембранным ферментом АТФ-синтазой.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор — хлорофилл a, тот — вторичный (витамин K1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b6f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b6f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая стадия

В темновой стадии с участием АТФ и НАДФН происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С3-фотосинтез, цикл Кальвина

Цикл Кальвина или восстановительный пентозофосфатный цикл состоит из трёх стадий:

На первой стадии к рибулозо-1,5-бифосфату присоединяется CO2 под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа. Этот белок составляет основную фракцию белков хлоропласта и предположительно наиболее распространённый фермент в природе. В результате образуется промежуточное неустойчивое соединение, распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК).

Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат — фосфорилированный углевод (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы. Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН и 18 АТФ.

С4-фотосинтез

При низкой концентрации растворённого в строме CO2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания.

Для увеличения концентрации CO2 растения С4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата, возвращаемого в клетки мезофилла.

С4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

При CAM (англ. Crassulaceae acid metabolism — кислотный метаболизм толстянковых) фотосинтезе происходит разделение ассимиляции CO2 и цикла Кальвина не в пространстве как у С4, а во времени. Ночью в вакуолях клеток по аналогичному вышеописанному механизму при открытых устьицах накапливается малат, днём при закрытых устьицах идёт цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности и С4, и С3. Он оправдан при стресстолерантной жизненной стратегии.

Значение фотосинтеза

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

История изучения фотосинтеза

Первые опыты по фотосинтезу были проведены Джозефом Пристли в 1770—1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал быть способен поддерживать горение, помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил, что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз.

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В 1842 Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В 1877 В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в 1818 П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии. Спектры поглощения хлорофилла были изучены К. А. Тимирязевым, он же, развивая положения Майера, показал, что именно поглощенные лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль. Это означало, что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в 1941 А. П. Виноградов в опытах с изотопной меткой. В 1937 г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO2 можно разобщить. В 1954—1958 Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х, за эту работу в 1961 ему была присуждена Нобелевская премия.

В 1955 году был выделен и очищен фермент рибулозобисфосфат-карбоксилаза/оксигеназа. С4 фотосинтез был описан Ю. С. Карпиловым в 1960 и М. Д. Хэтчем и К. Р. Слэком в 1966.

Прочие факты

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *