Что значит экспоненциально увеличивается
Экспонента — это число, показывающее, сколько раз какая-то величина должна быть умножена сама на себя. Например, если экспонента равна 3, а величина 4, то выражение 4 3 означает 4 х 4×4, что составит 64. Математическое выражение у 2 означает уху, ачисло 2 — это экспонента.
Чем экспоненциальный рост отличается от линейного? При линейном росте величина увеличивается на каждом этапе на одно и то оке, а не на кратное число. Если мой стартовый капитал составляет 1000 долларов и каждый год увеличивается на 100 долларов, то через 10 лет я его удвою и буду иметь 2000 долларов. Вот это и есть линейный рост, на одну и ту же сумму каждый год. Но если мой стартовый капитал в 1000 долларов каждый год будет увеличиваться на 10 процентов, то через десять лет у меня будет 2594 доллара. Это пример экспоненциального роста с постоянным кратным числом ежегодного увеличения 1,1. Если же я буду продолжать свой бизнес еще 10 лет, то линейный рост даст мне общую сумму 3000 долларов, в то время как экспоненциальный — 6727 долларов.
Любой рынок или бизнес, поддерживающий уровень роста 10 процентов или больше на протяжении длительного периода времени, получит гораздо больший эффект с плане создания стоимости, чем мы интуитивно оцениваем. Некоторые компании— такие как IBM или McDonald’s за период с 1950 по
1985 год или Microsoft в 1990-х годах— сумели обеспечить уровень роста, превышающий 15 процентов в год, и во много раз увеличили свои капиталы. Если вы начнете со 100 долларов и в течение 15 лет будете увеличивать капитал на 15 процентов в год, то в конце у вас будет уже 3292 доллара, то есть почти в 33 раза больше, чем в начале. Незначительное увеличение процента роста приводит к большой разнице в результатах.
К примеру, американский биржевой брокер Уильям О’Нил создал для своих одноклассников фонд и управлял им с 1961 по 1986 год. За это время первоначальные 850 долларов превратились в сумму 51 653 доллара после выплаты всех налогов*. За 25 лет средний рост составил 17,85 процента в год, что выразилось в увеличении первоначальной суммы в 61 раз. Таким образом, мы видим, что если за 25 лет 15-процентный рост увеличивает капитал в 33 раза, то добавление меньше чем 3 процентных пунктов к темпам годового прироста увеличивает результат в 61 раз.
Экспоненциальный рост меняет вещи не только количественно, но и качественно. Например, при быстром росте индустрии — Питер Дрюкер называет цифру 40 процентов за 10 лет — меняется сама ее структура, и на первый план выходят новые лидеры рынка. Быстрому росту рынков способствуют новаторство, отсутствие закономерности, новые продукты, технологии или потребители. Новаторы по определению ведут дела не так, как все. Новые способы редко уживаются с привычками, идеями, процедурами и структурами существующих фирм. Новаторы нередко получают возможность снимать пенки на протяжении нескольких лет, пока традиционные лидеры не решат пойти в контратаку, но тогда может быть уже поздно.
Экспоненциальный рост
Если прирост численности популяции пропорционален количеству особей, численность популяции будет расти экспоненциально.
Выражение «экспоненциальный рост» вошло в наш лексикон для обозначения быстрого, как правило безудержного увеличения. Оно часто используется, например, при описании стремительного роста числа городов или увеличения численности населения. Однако в математике этот термин имеет точный смысл и обозначает определенный вид роста.
Экспоненциальный рост имеет место в тех популяциях, в которых прирост численности (число рождений минус число смертей) пропорционален числу особей популяции. Для популяции человека, например, коэффициент рождаемости примерно пропорционален количеству репродуктивных пар, а коэффициент смертности примерно пропорционален количеству людей в популяции (обозначим его N ). Тогда, в разумном приближении,
(Здесь r — так называемый коэффициент пропорциональности, который позволяет нам записать выражение пропорциональности в виде уравнения.)
Пусть d N — число особей, добавившихся к популяции за время dt, тогда если в популяции в общей сложности N особей, то условия для экспоненциального роста будут удовлетворены, если
После того как в XVII веке Исаак Ньютон изобрел дифференциальное исчисление, мы знаем, как решать это уравнение для N — численности популяции в любое заданное время. (Для справки: такое уравнение называется дифференциальным.) Вот его решение:
где N 0 — число особей в популяции на начало отсчета, а t — время, прошедшее с этого момента. Символ е обозначает такое специальное число, оно называется основание натурального логарифма (и приблизительно равно 2,7), и вся правая часть уравнения называется экспоненциальная функция.
Чтобы лучше понять, что такое экспоненциальный рост, представьте себе популяцию, состоящую изначально из одной бактерии. Через определенное время (через несколько часов или минут) бактерия делится надвое, тем самым удваивая размер популяции. Через следующий промежуток времени каждая из этих двух бактерий снова разделится надвое, и размер популяции вновь удвоится — теперь будет уже четыре бактерии. После десяти таких удвоений будет уже более тысячи бактерий, после двадцати — более миллиона, и так далее. Если с каждым делением популяция будет удваиваться, ее рост будет продолжаться до бесконечности.
Существует легенда (скорее всего, не соответствующая действительности), будто бы человек, который изобрел шахматы, доставил этим такое удовольствие своему султану, что тот пообещал исполнить любую его просьбу. Человек попросил, чтобы султан положил на первую клетку шахматной доски одно зерно пшеницы, на вторую — два, на третью — четыре и так далее. Султан, посчитав это требование ничтожным по сравнению с оказанной им услугой, попросил своего поданного придумать другую просьбу, но тот отказался. Естественно, к 64-му удвоению число зерен стало таким, что во всем мире не нашлось бы нужного количества пшеницы, чтобы удовлетворить эту просьбу. В той версии легенды, которая известна мне, султан в этот момент приказал отрубить голову изобретателю. Мораль, как я говорю моим студентам, такова: иногда не следует быть чересчур умным!
d N = rN(1 — ( N / K )) dt
Экспонента в математике – это функция «y=ex», которая отражает непрерывный рост с коэффициентом. В этой функции «е» – это число Эйлера, которое представляет собой постоянную (
2,72). Говоря иначе, рост любой величины прямо пропорционален ее значению.
Допустим, мы слепили снежный ком и спустили его с горы. Он начинает катиться, одновременно наращивая объем. При этом чем больше он становится, тем выше скорость его движения. И наоборот: чем быстрее он катится, тем быстрее увеличивается в размерах. Получается, что масса и скорость снежного кома (y) экспоненциально возрастают со временем (x).
Экспонента в жизни. Экспоненциальный рост
Рассмотрим примеры экспоненты и экспоненциального роста в реальной жизни.
Вклад в банке под процент. У всех процессов, идущих по экспоненте, есть одна особенность: за одно и то же количество времени их параметры меняются одинаковое количество раз.
Например, вклад в банке каждый год увеличивается на определенное количество процентов. Если положить 1000 рублей в банк под 10% годовых, то через год вклад будет составлять 1100 рублей. А в следующем году 10% будут начисляться уже исходя из суммы в 1100 рублей. То есть, вклад вырастет сильнее, и так размер прироста будет увеличиваться из года в год.
Численность животных. Чем больше популяция животных, тем больше они размножаются. Соответственно, рост численности популяции прямо пропорционален количеству особей в ней.
Чем экспоненциальный рост отличается от линейного?
Линейный рост характеризуется стабильным прибавлением постоянной, а экспоненциальный рост – это следствие многократного умножения на постоянную. То есть если линейный рост на графике представляет собой стабильную линию, то экспоненциальный рост характеризуется быстрым взлетом.
В качестве примера можно привести обычную ходьбу. Если длина одного шага составляет 1 метр, то через 6 шагов человек преодолевает расстояние в 6 метров. Это и называется линейным ростом.
При экспоненциальном росте длина каждого шага в нашем примере увеличивается в 2 раза. То есть сначала человек шагает на 1 метр, потом на 2 метра, потом на 4 метра и так далее. В таком случае за 6 шагов можно пройти 32 метра, что гораздо больше, чем в предыдущем примере.
Экспоненциальный рост это особый способ увеличения количества со временем. Возникает при мгновенном скорость изменения (это производная) величины по времени равна пропорциональный к самому количеству. Описывается как функцияэкспоненциально растущая величина экспоненциальная функция времени, то есть переменной, представляющей время, является показатель степени (в отличие от других типов роста, таких как квадратичный рост).
Если коэффициент пропорциональности отрицательный, то величина со временем уменьшается и, как говорят, подвергается экспоненциальный спад вместо. В случае дискретного домен определения с равными интервалами, его также называют геометрический рост или геометрический распад поскольку значения функции образуют геометрическая прогрессия.
где Икс0 это ценность Икс в момент времени 0. Рост бактериальный колония часто используется для иллюстрации. Одна бактерия распадается на две, каждая из которых разделяется на четыре, затем восемь, 16, 32 и так далее. Скорость увеличения продолжает расти, потому что она пропорциональна постоянно растущему количеству бактерий. Подобный рост наблюдается в реальной деятельности или явлениях, таких как распространение вирусной инфекции, рост долга из-за сложные проценты, и распространение вирусные видео. В реальных случаях начальный экспоненциальный рост часто не длится вечно, вместо этого он в конечном итоге замедляется из-за верхних пределов, вызванных внешними факторами и превращаясь в логистический рост.
Содержание
Примеры
Биология
Физика
Экономика
Финансы
Информатика
Интернет-феномены
Основная формула
Количество Икс экспоненциально зависит от времени т если
Икс ( т ) = а ⋅ б т / τ < Displaystyle х (т) = а cdot b ^ <т / тау>>
где постоянная а начальное значение Икс,
постоянная б положительный фактор роста, а τ это постоянная времени- время, необходимое для Икс увеличить в один раз б:
Пример: Если количество бактерий удваивается каждые десять минут, начиная с одной бактерии, сколько бактерий будет присутствовать через час? Вопрос подразумевает а = 1, б = 2 и τ = 10 мин.
Через час или шесть десятиминутных интервалов будет шестьдесят четыре бактерии.
Многие пары (б, τ) из безразмерный неотрицательное число б и количество времени τ (а физическое количество который может быть выражен как произведение количества единиц на единицу времени) представляют одну и ту же скорость роста, причем τ пропорционально бревнуб. Для любых фиксированных б не равно 1 (например, е или 2) темп роста задается ненулевым временем τ. Для любого ненулевого времени τ скорость роста определяется безразмерным положительным числомб.
Таким образом, закон экспоненциального роста может быть записан в различных, но математически эквивалентных формах, используя разные основание. Наиболее распространены следующие формы:
где Икс0 выражает начальную величину Икс(0).
Параметры (отрицательные в случае экспоненциального спада):
Количество k, τ, и Т, и для данного п также р, имеют взаимно однозначную связь, задаваемую следующим уравнением (которое может быть получено путем натурального логарифма приведенного выше):
где k = 0 соответствует р = 0 и до τ и Т быть бесконечным.
Если п это единица времени частное т/п это просто количество единиц времени. Используя обозначения т для (безразмерного) количества единиц времени, а не для самого времени, т/п можно заменить на т, но для единообразия здесь этого удалось избежать. В этом случае деление на п в последней формуле тоже не числовое деление, а преобразование безразмерного числа в правильное количество, включая единицу.
Экспоненциальный рост
Экспоненциальный рост — возрастание величины, когда скорость роста пропорциональна значению самой величины. Говорят, что такой рост подчиняется экспоненциальному закону. Экспоненциальный рост противопоставляется более медленным (на достаточно длинном промежутке времени) линейному, степенному или геометрическому зависимостям.
Содержание
Свойства
Для любой экспоненциально растущей величины, чем большее значение она принимает, тем быстрее растет. Также это означает, что величина зависимой переменной и скорость ее роста прямо пропорциональны. Но при этом, в отличие от гиперболической экспоненциальная кривая никогда не уходит в бесконечность за конечный промежуток времени.
Экспоненциальный рост в итоге оказывается более быстрым, чем любая геометрическая прогрессия, чем любой степенной, и тем более, чем любой линейный рост.
Математическая запись
Экспоненциальный рост описывается дифференциальным уравнением:
Решение этого дифференциального уравнения — экспонента:
Примеры
Примером экспоненциального роста может быть рост числа бактерий в колонии до наступления ограничения ресурсов. Другим примером экспоненциального роста являются сложные проценты.
См. также
Ссылки
Полезное
Смотреть что такое «Экспоненциальный рост» в других словарях:
экспоненциальный рост — eksponentinis didėjimas statusas T sritis fizika atitikmenys: angl. exponential rising vok. Exponentialanstieg, m rus. экспоненциальный рост, m pranc. accroissement exponentiel, m … Fizikos terminų žodynas
ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ — рост с относительно постоянной скоростью … Словарь ботанических терминов
Рост — процесс увеличения какого либо качества со временем. Качества могут быть как физическими (например, рост в высоту), так и абстрактными (например, взросление человека, расширение системы): Клеточный рост, или пролиферация Рост населения Рост… … Википедия
Закон экспоненциального роста — Экспоненциальный рост в математике экспоненциальное возрастание величины (возрастание в геометрической прогрессии), которая растет со скоростью, пропорциональной её значению. Говорят что такой рост подчиняется экспоненциальному закону. Это… … Википедия
АЛГОРИТМ — [от algorithm!; algorismus, первоначально лат. транслитерация имени ср. азиат. учёного 9 в. Хорезми (Мухаммед бен Муса аль Хорезми)], программа, определяющая способ поведения (вычисления); система правил (предписаний) для эффективного… … Философская энциклопедия
ДИОФАНТОВЫХ УРАВНЕНИИ ПРОБЛЕМА РАЗРЕШИМОСТИ — проблема отыскания алгоритма для распознавания по любому диофантову уравнению, имеет ли оно решение. Существенным в постановке проблемы является требование найти универсальный метод, к рый должен быть пригоден для любого уравнения (все известные… … Математическая энциклопедия
Перцептрон — Логическая схема перцептрона с тремя выходами Перцептрон, или персептрон[nb 1] (англ. perceptron от … Википедия