Что значит что уравнение однородное
Как определить однородное уравнение
Дифференциальное уравнение 1-го порядка P(x;y)dx+Q(x;y)dy=0 называется однородным, если P(x;y) и Q(x;y) — однородные функции одинакового измерения, то есть
Как определить, что дифференциальное уравнение — однородное? На практике проверку уравнения на однородность проводят следующим образом: вместо каждого x подставляют λx, вместо каждого y — λy. При этом y’, dx и dy не трогают. После этого упрощают уравнение. Если после упрощения удается сократить на λ (или n- ю степень λ) и получить исходное уравнение, то это и означает, что данное уравнение является однородным уравнением 1-го порядка.
Другая форма записи: y’=f(x;y). Это уравнение является однородным, если функция f(x;y) является однородной функцией нулевого порядка. Это означает, что f(λx;λy)=f(x;y).
Подставляем вместо каждого x λx, вместо каждого y — λy:
Выносим лямбда в квадрате за скобки и сокращаем на него:
Пришли к исходному уравнению, а это значит, что данное уравнение — однородное.
2) (x-y)ydx-x²dy=0.
Подставляем вместо каждого x λx, вместо каждого y — λy: (λx-λy)λydx-(λx)²dy=0. Теперь выносим общий множитель λ² за скобки: λ²((x-y)ydx-x²dy)=0. Делим обе части уравнения на λ²:
(x-y)ydx-x²dy=0. Пришли к исходному уравнению, значит, это уравнение — однородное. (Здесь P(x;y) и Q(x;y) — однородные функции 2й степени).
Наличие дроби y/x уже косвенно указывает на то, что уравнение может быть однородным. Проверим, так ли это:
После сокращения на λ получаем исходное уравнение:
а это значит, что данное уравнение является однородным.
Подставляем вместо каждого x λx, вместо каждого y — λy:
Делим обе части уравнения на лямбда в 4й степени:
Получили исходное уравнение, а значит, оно является однородным. (Здесь P(x;y) и Q(x;y) — однородные функции 4й степени).
Однородное уравнение
Смотреть что такое «Однородное уравнение» в других словарях:
однородное уравнение — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN homogeneous equation … Справочник технического переводчика
Однородное уравнение — Однородным уравнением n й степени, называется уравнение вида: Такое уравнение после исключения отдельно рассматриваемого случая и деления уравнения на сводится с помощью замены к алгебраическому уравнению … Википедия
Уравнение Коши — Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… … Википедия
Уравнение теплопроводности — Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки. Уравнение теплопроводности важное уравнение в частных производных, которое описывает распространение тепла в заданной… … Википедия
Уравнение Коши — В математике (дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному… … Википедия
Уравнение диффузии — Механика сплошных сред … Википедия
Линейное дифференциальное уравнение с постоянными коэффициентами — Линейное дифференциальное уравнение с постоянными коэффициентами обыкновенное дифференциальное уравнение вида: где искомая функция, её тая производная, фиксированные числа … Википедия
Что значит что уравнение однородное
Однородное дифференциальное уравнение можно решить с помощью подстановки \(y = ux,\) которая преобразует однородное уравнение в уравнение с разделяющимися переменными.
Дифференциальное уравнение вида \[\left( <
Нетрудно заметить, что многочлены \(P\left(
Интегрируем последнее выражение: \[\int
Возвращаясь к старой переменной \(y,\) можно записать: \[y = ux = x\left( <2\ln \left| x \right| + C>\right).\] Таким образом, уравнение имеет два решения: \[y = x\left( <2\ln \left| x \right| + C>\right),\;\;x = 0.\]
Заметим, что корень \(x = 0\) не принадлежит области определения заданного дифференциального уравнения. Перепишем уравнение в следующей форме: \[y’ = \frac
Здесь мы снова встречаемся с однородным уравнением. В самом деле, запишем его в виде: \[
Однородные уравнения
Однородные уравнения
Это означает, что однородный многочлен n-й степени f (х, у) можно представить в виде
где — коэффициенты многочлена, одновременно не обращающиеся в нуль.
т.е. условие (1) из определения выполняется (n = 2).
Итак, однородное алгебраическое уравнение — это уравнение, не меняющее своего вида при одновременном умножении всех его неизвестных на одно и то же число, отличное от нуля. Можно распространить понятие однородности на случай неалгебраических уравнений.
Пусть р(х) и q(x) — две произвольные функции, определённые на одном и том же множестве, .
В частности, если функции р(х) и q(x) являются целыми алгебраическими многочленами, то и уравнение (2) будет относиться к аналогичному классу. В качестве другого примера рассмотрим уравнение вида
Оно является однородным тригонометрическим уравнением 2-й степени относительно функций
Перейдём к процедуре решения уравнения (2).
Если хотя бы один из коэффициентов или обращается в нуль, то левая часть уравнения легко раскладывается на множители. В результате уравнение оказывается равносильно на ОДЗ совокупности двух уравнений. Например, если , то получим совокупность
Если же и , то для решения однородного уравнения (2) необходимо рассмотреть два возможных случая.
решив которое и сделав обратную подстановку, найдём часть решений однородного уравнения.
2) Если q(х) = 0. то, подставив в уравнение вместо q(x) нуль, получим, что тогда и р(х) должно обращаться в нуль. Таким образом, этот случай сводится к решению системы уравнений
Осталось объединить все найденные решения. Уравнение (2) решено. Обратимся к примерам.
Пример №185.
Решить уравнение
Решение:
Пример №186.
Решить в целых числах уравнение
Решение:
Заметим, что если у = 0, то x = 0, и, значит, пара (0;0) удовлетворяет уравнению. Пусть , тогда поделим обе части уравнения на :
Ответ: где .
Пример №187.
Для каждого действительного значения параметра а решить уравнение
Решение:
Заметим, что данное уравнение можно рассмотреть как однородное алгебраическое уравнение 4-й степени относительно x и а.
2) Если , то поделим на , и положим :
Первый сомножитель в нуль не обращается, а второй имеет два корня
Ответ: при а = 0 единственное решение x = 0 ;
при два решения
Пример №188.
Найти действительные корни уравнения
Решение:
Данное уравнение в исходном виде не является однородным, но может быть сведено преобразованиями к однородному. Действительно, достаточно привести его к виду
Получили однородное уравнение 2-й степени относительно x + 1 и у — 1.
1) Если , то, поделив на и обозначив , получим нет решений.
Ответ:
Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:
Эти страницы возможно вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Однородное уравнение
Одноро́дным уравнением n-й степени, называется уравнение вида:
Такое уравнение после исключения отдельно рассматриваемого случая и деления уравнения на сводится с помощью замены к алгебраическому уравнению -ой степени
См. также
Полезное
Смотреть что такое «Однородное уравнение» в других словарях:
однородное уравнение — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN homogeneous equation … Справочник технического переводчика
Однородное уравнение — уравнение, не меняющее своего вида при одновременном умножении всех (или только некоторых) неизвестных на одно и то же произвольное число. Во втором случае уравнение называется однородным по отношению к соответствующим неизвестным. Так,… … Большая советская энциклопедия
Уравнение Коши — Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… … Википедия
Уравнение теплопроводности — Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки. Уравнение теплопроводности важное уравнение в частных производных, которое описывает распространение тепла в заданной… … Википедия
Уравнение Коши — В математике (дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному… … Википедия
Уравнение диффузии — Механика сплошных сред … Википедия
Линейное дифференциальное уравнение с постоянными коэффициентами — Линейное дифференциальное уравнение с постоянными коэффициентами обыкновенное дифференциальное уравнение вида: где искомая функция, её тая производная, фиксированные числа … Википедия