Что означают фигурные скобки в геометрии
Скобки в математике
Вы будете перенаправлены на Автор24
Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.
Использование круглых скобок в математике
Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.
Первое применение.
С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.
В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.
Второе применение.
Третье применение.
Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.
$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$
Четвёртое применение.
Пятое применение.
Готовые работы на аналогичную тему
Пятое применение.
Квадратные скобки в математике
Что же означают квадратные скобки в математике и для чего они используются?
Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.
Первое применение.
Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.
Второе применение.
Третье применение.
С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.
$\left [ \begin
Фигурная скобка в математике
Первое применение.
С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.
Второе применение.
Третье применение.
Треугольные скобки
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 06 03 2021
Зачем нужны фигурные скобки «< >» в обозначении промежутков
Фигурные скобки используются в математике для обозначения операции взятия дробной части; приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок); для обозначения множеств.
Фигурные скобки используются в математике для обозначения операции взятия дробной части; приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок); для обозначения множеств.
Скобки для указания порядка выполнения действий
Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.
Рассмотрим на примере заданное выражение. Если дан пример вида 5+3-2, тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при (5+3)-2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5+(3-2), тогда в начале производятся вычисления в скобках, после чего сложение с числом 5. На исходное значение в этом случае оно не повлияет.
Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5+2·4, видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид (5+2)·4, то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.
Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида (4+5·2)−0,5:(7−2):(2+1+12) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.
Существуют примеры, где имеются вложенные сложные скобки вида 4·6-3+8:2 и 5·(1+(8-2·3+5)-2))-4. Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.
Пример 3
Если имеется выражение 4·6-3+8:2, тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6, умножить на 4 и прибавить 8. В конце следует разделить на 2. Только так можно получить верный ответ.
На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5-1:2+12+3-13·2·3-4. Редко встречается применение выделенных скобок (2+2·(2+(5·4−4)))·(6:2−3·7)·(5−3) или применяют квадратные, например, [3+5·(3−1)]·7 или фигурные <5+[7−12:(8−5):3]+7−2>:[3+5+6:(5−2−1)].
Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.
Отрицательные числа в скобках
Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5+(−3)+(−2)·(−1), 5+-23, 257-5+-673·(-2)·-3,5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.
Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида −5·4+(−4):2, то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3-0,4-2,2·3+7+3-1:2 число 2,2 записано вначале, значит скобки также не нужны.
Угловые скобки
Ско́бки — па́рные знаки, используемые в различных областях.
Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.
В математике, физике, химии и др. используются при написании формул.
Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂.
Содержание
Круглые скобки
Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение означает, что сначала выполняется логическое сложение а затем — логическое умножение Наряду с квадратными скобками используются также для записи компонент векторов:
Круглые скобки в математике используются также для выделения аргументов функции: для обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:
(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:
При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.
В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.
Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках.
Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.
Квадратные скобки
В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.
Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».
Квадратными скобками в математике могут обозначаться:
В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.
В программировании чаще всего применяются для указания индекса элемента массива.
Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).
Фигурные скобки
Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: Как уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.
В вики-разметке двойные фигурные скобки применяются для шаблонов.
В программировании фигурные скобки являются или операторными (Си, C++, Perl и комментарием (Паскаль), могут также служить для образования списка (в Сетл).
Угловые скобки
В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:
В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracket — скобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как (кет-вектор) и (бра-вектор), их скалярное произведение как матричный элемент оператора А в определённом базисе как
Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, — среднее значение по времени от величины f.
В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — .
Типографика
В типографике же угловые скобки являются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — .
В ТеХе для записи угловых скобок используются команды «\langle» и «\rangle».
ASCII-тексты
В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.
В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.
В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:
файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге исходника программы).
В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.
Косые скобки
Появились на пишущих машинках для экономии клавиш.
В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:
Прямые скобки
Используются в математике для обозначения модуля числа или вектора, определителя матрицы:
Двойные прямые скобки
Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:
Скобки
Сюда перенаправляются запросы 🙂 и некоторые другие, начинающиеся с двоеточия. О них см. статью смайлик.