Что означает ускорение по модулю в физике
Ускорение
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
Рис. 1.8. Среднее ускорение.В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть
а направление вектора ускорения совпадает с вектором скорости
Если скорость тела по модулю уменьшается, то есть
то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а
Рис. 1.9. Мгновенное ускорение.
При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
(согласно теореме Пифагора для прямоугольно прямоугольника).
Направление полного ускорения также определяется правилом сложения векторов:
Единицы измерения ускорения.
Ускорение – это физическая величина (a, от лат. acceleratio), характеризующая быстроту изменения скорости тела. Ускорение является векторной величиной, показывающей, насколько изменяется вектор скорости тела при его движении за единицу времени:
Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.
Равнопеременное движение точки – это движение с постоянным ускорением,
Под словом равнопеременное понимают:
2. Равнозамедленное движение – если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: .
Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:
где — скорость в начальный момент времени, принятый за нуль; — текущее значение скорости (в момент времени t). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю: имеет вид:
Если же нулю равна не начальная, а конечная скорость ( торможение при равнозамедленном движении), то формула ускорения принимает вид:
При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной – по касательной к траектории движения, и нормальной – перпендикулярно траектории
В соответствии с этим проекцию ускорения на касательную к траектории называют касательным или тангенциальным ускорением, а проекцию на нормаль – нормальным или центростремительным ускорением.
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
.
Определение и свойства
Любое изменение скорости тела приводит к ускорению (ᾱ) как в сторону увеличения, что обычно подразумевается, так и снижения, то есть замедления. Также этот термин может означать смену направления (центростремительность). Это связано с прямой зависимостью сил, которые действуют на объект, от изменения скорости (v), являющейся величиной векторной и имеющей направление. Так ускоряться будут:
Например, транспортное средство начинает движение с места и продолжает ехать, увеличивая v, — это ᾱ линейное (или тангенциальное). Пассажиры внутри машины будут ощущать его как силу, которая прижимает их к спинкам сидений. Если автомобиль поворачивает, то есть меняет направление, то это уже ᾱ радиальное. Люди в салоне будут наклоняться в сторону, противоположную движению.
Когда водитель решит остановиться, это тоже будет ускорением, но только в противоположном направлении v движения авто. В космосе такое ᾱ называют ретроградным горением или замедлением. Пассажиры будут чувствовать, будто что-то их толкает вперёд. Принято различать два вида ᾱ:
Например, мотоцикл набирает скорость 50 м/с за 10 с, его среднее ᾱ = 50 / 10 = 5 м/с².
Другие формы
Можно взять материальный предмет, например, спутник, который вращается вокруг Земли. Он двигается по окружности и ускоряется, причина этого — изменение направления траектории движения. При этом его скоростной режим может не изменяться. В этом случае речь идёт о центростремительном (направленном к центру) ᾱ.
Ускорение тела относительно состояния свободного падения (ᾱ правильное) измеряется акселерометром. В механике для предмета с постоянной массой (m) ᾱ центра m тела пропорционально действующему на него вектору силы (суммы всех сил). Здесь действует второй закон Ньютона: F = m * ᾱ → ᾱ = F / m.
Скорость частицы, которая движется по криволинейной траектории, можно записать как функцию времени v(t) = v(t) * v(t) / v(t) = v(t) * ut(t), где единичный вектор касательной (ut) к траектории равен v(t) / v(t) и указывает направление движения в конкретный момент времени. Это и есть формула центростремительного ускорения, которое создаётся при круговом движении. Можно использовать цепное правило дифференцирования, чтобы записать формулу для произведения двух функций, если принять во внимание, что ᾱ частицы происходит по некой кривой проекции. Последовательность действий уравнения следующая:
В уравнении un — единичный вектор нормали, r — мгновенный радиус кривизны, который основывается на колеблющемся круге в момент времени t. Все эти компоненты являются тангенциальным, радиальным или нормальным ускорением, формула которого может быть представлена в виде функции.
Особые случаи
Если при движении v изменяется на равную величину, то есть объект равноускоренный в каждый одинаковый период времени, то это можно охарактеризовать как равномерное или постоянное ускорение. Пример этого в физике — формула ускорения свободного падения тела, вид которой при отсутствии сопротивления будет зависеть от гравитационного поля и силы стандартной гравитации (g).
Чтобы составить уравнение, придётся проделать небольшой путь от самых основ. Второй закон Ньютона гласит, что Fg = mg. В кинематике есть формулы, которые связывают смещение (sₒ), начальную (vₒ) и зависящую от времени v(t) скорость и ускорение с прошедшим временем (t):
Наглядно расчёт разности можно увидеть, если начертить график.
Частица будет испытывать ускорение, которое возникает в результате изменения направления вектора скорости, тогда как её величина остаётся постоянной при равномерном круговом движении. Производная от расположения точки на кривой по времени, то есть её v, оказывается всегда точно касательной к линии, соответствующей ортогональному радиусу в этой точке.
Это ускорение постоянно меняет направление скорости, которая будет касаться соседней точки, тем самым заставляя вектор скорости совершать вращательные движения по кругу. Формула будет выглядеть следующим образом: ᾱс = v² / r. Надо помнить, что v здесь — произведение угловой скорости ω на r.
Единица измерения
Ускорение рассчитывается путём деления метров в секунду (м/с) на секунды (с). Деление расстояния по времени вдвое равно делению расстояния на квадрат времени. Таким образом, единицей ускорения СИ является метр в секунду в квадрате (м/с²). Чтобы было весело изучать физику, можно рассмотреть несколько интересных примеров в таблице.
ᾱ ( м/с²) | Событие |
0,5 | гидравлический лифт |
0,63 | ускорение свободного падения (УСП) на Плутоне |
1 | лифт на кабеле |
1,6 | ускорение свободного падения на Луне |
8,8 | Международная космическая станция |
10—40 | механический прямолинейный старт пилотируемой ракеты |
20 | космический челнок |
9,8 | УСП на Земле |
20—50 | американские горки |
80 | предел устойчивой человеческой терпимости |
0—150 | тренировочная центрифуга |
600 | автоматические подушки безопасности |
1 млн | пуля в стволе пистолета |
24,8 | УСП на Юпитере |
Другая часто используемая единица — ускорение силы тяжести g. Поскольку все знакомы с влиянием гравитации на физические объекты, это делает их удобным стандартом для сравнения ускорений. Все чувствуют себя нормально при 1 g, вдвое тяжелее при 2 g и невесомо при 0 g. Эта единица измерения имеет значение 9,80665 м/с², но для повседневного использования достаточно 9,8 м/с², а 10 м/с² удобно для быстрых подсчётов.
Действие на людей
Хотя термин «сила g» часто используется, g — мера ускорения, а не силы. Особую обеспокоенность у людей вызывают физиологические эффекты этого явления. Чтобы понять смысл, лучше обратиться к примерам:
По оценкам экспертов, ускорение во время аварии, в которой погибла принцесса Диана, составляло порядка 70—100 g.
Этого было достаточно, чтобы оторвать лёгочную артерию от её сердца и спровоцировать травму, которую практически невозможно пережить. Если бы Диана была пристёгнута ремнём безопасности, ускорение составило бы примерно 30 или 35 g. Это грозило несколькими переломами, но все остались бы живы.
Что означает ускорение по модулю в физике
3.1. Равнопеременное движение по прямой.
3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:
3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.
где — начальная скорость тела, — скорость тела в момент времени t.
В проекции на ось Ox:
где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.
Знаки проекций зависят от направления векторов и оси Ox.
3.1.3. График проекции ускорения от времени.
При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):
Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения
3.1.4. Скорость при равнопеременном движении.
В проекции на ось Ox:
Для равноускоренного движения:
Для равнозамедленного движения:
3.1.5. График проекции скорости в зависимости от времени.
График проекции скорости от времени — прямая линия.
Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.
Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время
Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).
3.1.6. Геометрический смысл площади под графиком в осях
Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.
На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:
(3.9)
3.1.7. Формулы для расчета пути
Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.
Если же пересечение произошло, то движение проще разбить на два этапа:
до пересечения (торможение):
После пересечения (разгон, движение в обратную сторону)
В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени, — время, прошедшее с момента пересечения оси времени до данного момента t, — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.
За время тело пройдет путь:
За время тело пройдет путь:
За промежуток можно принимать любой отрезок времени. Чаще всего с.
Если то
Тогда за 1-ую секунду тело проходит путь:
Если внимательно посмотрим, то увидим, что и т. д.
Таким образом, приходим к формуле:
Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при
3.1.9. Уравнение координаты тела при равнопеременном движении
Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.
Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:
3.2. Графики кинематических величин при прямолинейном движении
3.3. Свободное падение тела
Под свободным падением подразумевается следующая физическая модель:
1) Падение происходит под действием силы тяжести:
2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);
3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);
4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);
3.3.1. Уравнения движения в проекции на ось Oy
В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.
Уравнение координаты тела:
Уравнение проекции скорости:
Как правило, в задачах удобно выбрать ось Oy следующим образом:
Ось Oy направлена вертикально вверх;
Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.
При таком выборе уравнения и перепишутся в следующем виде:
3.4. Движение в плоскости Oxy.
Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:
Или в векторном виде:
И изменение проекции скорости на обе оси:
3.5. Применение понятия производной и интеграла
Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.
где A, B и то есть постоянные величины.
Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.
то есть скорость является производной от радиус-вектора.
Для проекции скорости:
то есть ускорение является производной от скорости.
Для проекции ускорения:
Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.
Теперь воспользуемся понятием интеграла.
то есть, скорость можно найти как интеграл по времени от ускорения.
то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.
Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.
Константы в формулах определяются из начальных условий — значения и в момент времени
3.6. Треугольник скоростей и треугольник перемещений
3.6.1. Треугольник скоростей
В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):
Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).
В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.
3.6.2. Треугольник перемещений
В векторном виде закон движения при постоянном ускорении имеет вид:
При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда
то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).
Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.