Что означает термин затухание в передаче данных
Отношение затухания к наводкам – важнейшие параметры СКС
Качество передачи сигналов характеризуют два важнейших параметра: ACR и ELFEXT. ACR означает превышение сигнала над уровнем собственных шумов для двунаправленной передачи сигналов, ELFEXT – для однонаправленной.
Физический смысл терминов прост и понятен. В стандартах СКС большая часть параметров выражена в виде логарифмических величин, измеряемых в децибелах. Децибел – это десятая доля Бела. Бел – это степень десятичного числа. Один Бел равен десяти в первой степени, два – десяти во второй и так далее. Вычитание логарифмических величин равно делению арифметических чисел, сложение логарифмов означает умножение чисел.
Рис. 1. Затухание, наводки и их отношение при двунаправленной и однонаправленной передаче
ATT = 10 log (Р3 прием / Р3 пер)
Из другой пары наводится нежелательный сигнал, величина которого определяется параметром NEXT. Наводки, возникающие при передаче импульсов, характеризуются пиками напряжения. Наводки (NEXT) – отношение мощности сигнала, наведенного на входе в приемник смежной пары, к мощности сигнала на выходе передающей линии.
NEXT = 10 log (Р3 нав / Р1 пер)
Отношение затухания к наводкам (ACR) в логарифмическом виде – это разность ATT и NEXT. Обе величины отрицательны, а их разность положительна.
Это важнейший параметр передачи сигналов. В типичном случае (протоколы 10 BaseT Ethernet, 100 BaseT Fast Ethernet и другие) используются две пары. Передача сигналов идет в противоположных направлениях. Отсюда перекрестные или двунаправленные наводки.
Отношение затухание / наводки в логарифмическом виде:
ATT – NEXT = ACR
–24 + 27,1 дБ = 3,1 дБ
Отношение затухание / наводки в арифметическом виде:
ATT / NEXT = ACR
1/251 : 1/513 / = 2,04
Пересчет логарифмической величины в арифметическую:
3,1 дБ = 2,04 раза
Такого отношения сигнал / шум совершенно не достаточно для протоколов класса D (эффективная полоса частот 100 МГц). Точное соответствие категории 5 / классу D приводит в каналах максимальной длины к возрастанию коэффициента битовых ошибок (BER) в миллионы раз. Битые пакеты передаются повторно, реальная скорость передачи данных снижается. Но это уже проблемы стандартов.
На нижней части рисунка 1 показана упрощенная схема наводок однонаправленной передачи с двумя парами. Существуют и другие схемы. Протокол Fast Ethernet 100 BaseT4 использует две пары, передающие сигналы в противоположных направлениях и две других – в любом направлении в зависимости от нагрузки. В Gigabit Ethernet 1000 BaseT задействованы все четыре пары, передача идет одновременно в обеих направлениях. В результате приходится учитывать не только межпарные, но и суммарные наводки.
Приведенная схема позволяет увидеть соответствие параметров ACR и ELFEXT. Затухание, наводки и их отношение определяют по тем же формулам, что и для двунаправленной передачи:
ATT = 10 log (Р3 прием / Р3 пер)
FEXT = 10 log (Р3 нав / Р1 пер)
ELFEXT = ATT – FEXT
В схемах на рисунке 1 возникает по одному значению NEXT на каждом конце линии и два значения FEXT на одном конце линии. Удаленность точек измерения не имеет значения, поскольку наводки всегда измеряются на входе в приемник. Современные стандарты требуют тестирования четырехпарных кабелей на шесть комбинаций межпарных двунаправленных и по двенадцать комбинаций межпарных однонаправленных наводок на каждом конце линии. Кроме того, фиксируется по четыре комбинации суммарных наводок PS NEXT и PS FEXT также на обоих интерфейсах тестирования. Все эти наводки реально возникают и влияют на качество сигналов, попадающих в приемники пар при работе протокола 1000 Base T Gigabit Ethernet.
Результаты тестирования канала категории 6 в графическом виде дают наглядное представление о характере указанных наводок в диапазоне частот 1 – 350 МГц.
Что означает термин затухание в передаче данных
Когда сигнал проходит вдоль канала связи, его амплитуда уменьшается, поскольку физическая среда сопротивляется потоку электрической или электромагнитной энергии. Этот эффект известен как затухание сигнала. При передаче электрических сигналов некоторые материалы, такие, как медь, являются более эффективными проводниками, чем другие. Однако все проводники содержат примеси, которые сопротивляются движению o образующих электрический ток электронов. Сопротивление проводников вызывает преобразование некоторой части электрической энергии сигнала в тепловую энергию по мере продвижения сигнала по кабелю, что ведет к постоянному снижению уровня электрического сигнала. Затухание сигнала выражается потерей мощности сигнала на единицу длины кабеля, обычно в децибелах на километр (дБ/км).
Рис. 2.5. Затухание сигнала
Для затухания устанавливается предел для максимальной длины канала связи. Это делается для того, чтобы гарантировать, что прибывающий на приемник сигнал обладает достаточной амплитудой для надежного распознавания и корректной интерпретации. Если канал превышает эту максимальную длину, на его протяжении для восстановления приемлемого уровня сигнала должны использоваться усилители или повторители (repeater).
Рис. 2.6. Повторители сигнала
Затухание сигнала увеличивается с ростом частоты. Это вызывает искажение реального сигнала, содержащего диапазон частот. Например, у цифрового сигнала есть очень острый, быстро растущий фронт импульса, создающий высокочастотный компонент. Чем острее (быстрее) подъем, тем больше будет компонент частоты. Это показано на рис. 2.5, где период фронта ослабленных сигналов прогрессивно увеличивается по мере прохождения сигнала по кабелю из-за большего затухания высокочастотных компонент. Эту проблему можно преодолеть использованием специальных усилителей (эквалайзеров), которые усиливают подверженные большему затуханию высокие частоты.
Свет также затухает при прохождений сквозь стекло во многом по тем же причинам. Электромагнитная энергия (свет) поглощается из-за естественного сопротивления стекла.
2.3.3. Полоса пропускания канала
Количество информации, которую канал может передать за данный период времени, определяется его способностью обработать скорость изменения сигнала> то есть его частоту. Аналоговый сигнал меняет частоту от минимальной до максимальной, и их разница составляет ширину спектра частот сигнала. Полоса пропускания (bandwidth) аналогового канала представляет собой разницу между максимальной и минимальной частотами, которые могут быть надежно переданы каналом. Обычно это частоты, на которых сигнал теряет половину своей мощности по сравнению с уровнями частот в середине диапазона или с* уровнями частот на входе канала; эти частоты обозначаются как точки 3 дБ. В последнем случае полоса пропускания известна как полоса пропускания 3 дБ.
Цифровые сигналы составлены из большого набора частотных компонентов, однако получать можно лишь те частоты, которые находятся внутри полосы пропускания канала. Чем больше полоса пропускания канала, тем выше может быть скорость передачи данных и тем более высокочастотные компоненты сигнала могут передаваться, поэтому может быть получено и декодировано более точное представление переданного сигнала
Рис. 2.7. Полоса пропусклния
Рис. 2.8. Влияние полосы пропусклния на цифровые сигналы
Максимальная скорость передачи данных (С) канала может быть определена из его юлосы пропускания с использованием следующей формулы выведенной математиком Найквистом (Nyquist).
C = 2 B log 2 M bps,
В особом случае при использовании лишв двух уровней, «ВКЛЮЧЕНО» и «ВЫКЛЮЧЕНО» (двоичном):
В качестве примера: максимальная скорость передачи данных, по Найквисту, для канала PSTN с полосой пропускания 3100 герц для двоичного сигнала будет следующей: 2 х 3100 = 6200 bps. В реальности достижимая скорость передачи данных снижается из-за наличия в канале шума.
2.3.4. Шум
При прохождении сигналов через канал связи атомы и молекулы в среде передачи вибрируют и излучают случайные электромагнитные волны в виде шума. Обычно сила передаваемого сигнала велика по сравнению с шумовым1 сигналом. Однако по мере продвижения и затухания сигнала его уровень может сравняться с уровнем шума. Когда полезный сигнал незначительно превышает фоновый шум, приемник не может отделить данные от шума и возникают ошибки связи.
Важным параметром канала является отношение мощности полученного сигнала (S) к мощности шумового сигнала (N). Отношение S/N называется отношением сигнал/шум и выражается обычно в децибелах, сокращенно дБ.
S/N = 10 log 10 (S/N) дБ,
где S- мощность сигнала в ваттах; N- мощность шума в ваттах.
C = B log 2(1 +S/N) bps,
Из этой формулы можно видеть, что увеличение полосы пропускания или увеличение отношения сигнала к шуму позволяет увеличить скорость передачи данных и что сравнительно небольшое увеличение полосы пропускания эквивалентно гораздо большему увеличению отношения сигнала к шуму.
Каналы цифровой передачи используют широкие полосы пропускания и цифровые повторители или регенераторы для воссоздания сигналов через регулярные интервалы, поддерживая приемлемые отношения сигнала к шуму. Ослабленные сигналы, получаемые регенератором, распознаются, перенастраиваются и пересылаются как почти точные копии исходных цифровых сигналов, как показано на рис. 2.9. В сигнале нет накапливаемого шума даже при передаче на тысячи километров, при условии поддержания приемлемых отношений сигнала к шуму.
Затухание сигнала в СКС
Согласно последним изменениям в стандартах в настоящее время используется термин вносимые потери, а не затухание. Но поскольку производители тестового оборудования используют термин «затухание» с 1993 г., в отчетах о проведенных тестированиях данный термин будут использовать и дальше.
Электрические сигналы, передаваемые по линии связи, проходя по ней, теряют часть энергии. Вносимые потери определяют количество энергии, которая теряется, пока сигнал достигает принимающего конца кабельной линии. Измерение величины вносимых потерь дает количественную оценку сопротивления кабельной линии при передаче по ней электрического сигнала.
Характеристики канала связи, связанные с вносимыми потерями, изменяются с частотой передаваемого сигнала; так, высокочастотные сигналы испытывают намного более высокое сопротивление. Иначе говоря, кабельные линии показывают более высокие значения вносимых потерь для высокочастотных сигналов. Следовательно, вносимые потери должны измеряться во всем используемом диапазоне частот. Например, если вы измеряете вносимые потери в канале категории 5e, то их значение нужно проверить для сигналов в диапазоне от 1 до 100 МГц. Для кабелей категории 3 частотный диапазон составляет от 1 до 16 МГц. Вносимые потери также возрастают с увеличением длины канала связи практически линейно. Другими словами, если линия «A» в два раза длиннее линии «B», а все остальные характеристики одинаковы, значение вносимых потерь для линии «A» будет в два раза больше, чем для линии «B».
Величина вносимых потерь выражается в децибелах (дБ). Децибел – это логарифм отношения величины выходной мощности (мощность сигнала, принимаемого в конце линии связи) к величине входной мощности (мощность сигнала, испускаемого в кабель передатчиком).
Затухание в кабеле в значительной степени зависит от типоразмера провода, используемого в составе пары. Провода калибра AWG24 будут иметь меньшее затухание, по сравнению с проводами той же длины калибра AWG26 (более тонкие). Кроме того, многожильные кабели будут иметь затухание на 20-50 % больше, чем сплошные(одножильные) медные провода. Полевое испытательное оборудование будет определять наихудшее значение затухания и необходимый запас, т. е. разницу между измеренным значением затухания и его максимальным значением, которое допускает выбранный стандарт. Следовательно, запас в 4 дБ лучше, чем 1 дБ.
Линейные устройства. Факторы, ухудшающие передачу
Распределение затухания
Максимальное затухание между двумя телефонными аппаратами на городской телефонной сети должно быть не более 28 дБр (децибел-разность). В данном случае все величины затухания показаны от уровня предыдущей точки. При этом затухание абонентских линий (АЛ) не должно превышать 4,5 дБ для кабеля с диаметром жил 0,32 и 3,5 дБ для жил с большим диаметром.
Затухание станционного четырехполюсника не должно превышать 1 дБ на РАТС (районных АТС) и 0,5 на узловых станциях (исходящего УИС или входящего сообщения — УВС).
Переходное затухание
Переходное затухание — величина, которая характеризует относительное количество энергии, переходящей вследствие электромагнитной связи из одной цепи в другую; выражается в децибелах. Так же как обычное затухание, оно измеряется отношением мощности на выходе к мощности на входе. Но в данном случае входным является мощность полезного сигнала одной цепи, выходным — мощность этого же сигнала в соседней цепи. Этот эффект обязательно имеет место между соседними цепями (жилами кабеля, проводами воздушной линии). Он может порождаться переходами сигналов из приемника в передатчик, а также при преобразовании четырехпроводной линии в двухпроводную и обратным преобразованием.
Различаются переходное затухание:
Меры по уменьшению переходного затухания.
Кабель с витыми парами
Для уменьшения влияния переходного затухания применяются кабели с витыми (скрученными) парами. Это многожильные кабели, у которых жилы скручены по парам или четверкам. Принцип борьбы с помехами переходного затухания заключается в том, что при скрутке провода, влияющие на отдельные участки кабеля, наводят электромагнитную энергию, равную по амплитуде и противоположную по направлению, как это показано на рис.2.7. При идеально сбалансированной скрутке (равный шаг скрутки, идеальная симметрия проводов) переходное затухание равно нулю.
Коэффициент импульсных помех служит для цифровой оценки состояния линии, он указывает количество ошибок на определенное число переданных битов. Нормальным считается коэффициент ошибок — это означает, что на битов в канале появляется одна помеха, которая может привести к ошибке. Минимально приемлемая величина коэффициента ошибок (допускается обычно при применении радиотракта) составляет . Величина считается хорошей. Следует учитывать, что эти показатели условны. Они измеряются за определенный интервал времени, например, за час. Но в реальности в течение каждого интервала они распределяются неравномерно и могут приходить концентрированно (пачкой). Поэтому иногда вводят коэффициент «пачечности» (концентрации ошибок), который показывает отношение количества ошибок, полученных в данном интервале времени, к ожидаемому среднему по всем интервалам. Для преодоления ошибок применяются различные алгоритмы, которые будут рассмотрены далее. Помехи ухудшают качество приема речи, а при передаче данных могут привести к неверному их принятию или задержкам, замедляющим реальную скорость обмена данными (скорость модема). Наибольшие проблемы возникают при ухудшении этого коэффициента и при контроле качества канала со стороны передающих или принимающих устройств. Если эти устройства настроены на отключение канала при превышении ошибки, то при случайных возмущениях в сети часто происходит полное отключение станции. Поэтому при автоматическом контроле этого параметра необходимо оставлять возможность регулировки порога.
Затухание сигнала
Для передачи телекоммуникационных сигналов применяются различные среды: электрический или оптический кабель связи, воздушное пространство и т.п. При этом не зависимо от выбранного способа передачи первоначальная энергия сигнала, которая была на выходе передатчика будет уменьшаться. Иными словами сигнал будет затухать. Главным негативным следствием этого процесса будет сложность в приеме сигнала, т.е. если энергия сигналы на выходе канала связи будет меньше некоего уровня (порога чувствительности приемника), то сигнал может быть принят с ошибкой.
В зависимости от канала связи причин затухания может быть достаточно много. В любом случае главная причина – неидеальность среды передачи. В частности электрический канал связи обладает неким сопротивлением и чем выше это сопротивление, тем выше будут потери. Энергия будет рассеиваться на нагрев проводника. Для оптического канала связи основной причиной затухания являются примеси в проводнике и неоднородности. Из-за наличия примесей и неоднородностей часть полезной энергии переотражается обратно в сторону источника или выходит за пределы оптического волокна.
Для радиоканала существует целый ряд причин затухания. Главной из них является рассеивание энергии сигнала на тепло, т.е. практически радиопередатчик «греет» окружающее пространство. Однако данный вид потерь вполне предсказуем и обладает свойством линейности. Таким образом, зная затухание сигнала для определенной частоты на единицу длинны, заранее можно рассчитать необходимую мощность излучения передатчика для передачи сигнала на заданное расстояние.
Большую проблему для сотовой связи создают искусственные объекты. Например, стена жилого дому вносит очень ощутимое затухание, в результате чего в центре здания связи может не быть вовсе. Решением этой сложности является размещение специальных Indoor (внутриобъектовых) – базовых станций, которые специально предназначены для создания устойчивого покрытия внутри подобных объектов. К сожалению, размещение даже внутриобъектовой базовой станции – это достаточно дорого и к этому прибегают в редких случаях, когда речь может идти о быстрой окупаемости или высокой важности клиента для оператора. В остальных случаях решение данной проблемы остается на плечах самого абонента. Решить эту проблему можно установив на мобильный телефон (MS) внешнюю антенну или подойдя к открытому пространству, например к окну.
При использовании материалов ссылка на сайт обязательна